Evolution of an approach to the modeling of zirconium hydrides morphology based on Monte-Carlo method in 3D representation

Получена 08 февраля 2023; Принята 16 марта 2023;
Эта работа написана на английском языке
Цитирование: T.N. Aliev, M.Y. Kolesnik. Evolution of an approach to the modeling of zirconium hydrides morphology based on Monte-Carlo method in 3D representation. Письма о материалах. 2023. Т.13. №2. С.143-148
BibTex   https://doi.org/10.22226/2410-3535-2023-2-143-148

Аннотация

Simulation of hydrides’ morphology in zirconium in 3D representation assuming classical heterogenous nucleation and diffusion growth with taking into account the mutual influence of neighbors.The paper describes a new computational module which simulates the zirconium hydride morphology in 3D representation. Hydrides are assumed to be discs with two possible orientations in perpendicular planes. We describe nucleation based on the classical theory of the heterogeneous nucleation on crystal lattice defects. Spatial and energy distributions of the defects can be predefined based on microstructural data. To describe the growth of zirconium hydrides and “competition” between them as sinks for hydrogen, we apply Voronoi tessellation of hydride centers. The growth of any hydride is provided by hydrogen from its Voronoi cell. Serial calculations allow us to obtain statistical parameters (mean and variance) based on Monte-Carlo method for any morphology metrics.

Ссылки (45)

1. M. P. Puls. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. London, Springer-Verlag (2012) 451 p. Crossref
2. M. P. Puls. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Hydride Reorientation. Tollered, Sweden, ANT International (2018) 27 p.
3. A. T. Motta et al. J. Nucl. Mater. 518, 440 (2019). Crossref
4. J. S. Bradbrook, G. W. Lorimer, N. Ridley. J. Nucl. Mater. 42, 142 (1972). Crossref
5. O. V. Shiman, M. R. Daymond. Mater. Chem. Phys. 231, 48 (2019). Crossref
6. S. D. Kim, J. S. Kim, J. Yoon. J. Alloys Compd. 735, 2007 (2018). Crossref
7. R. S. Daum, S. Majumdar, Y. Liu, M. C. Billone. J. Nucl. Sci. Technol. 43, 1054 (2006). Crossref
8. M. P. Puls. Metall. Trans. A. 22, 2327 (1991). Crossref
9. J. B. Bai, C. Prioul, D. François. Metall. Mater. Trans. A. 25, 1185 (1994). Crossref
10. A. Gopalan et al. J. Nucl. Mater. 544, 152681 (2021). Crossref
11. J. S. Kim, T. H. Kim, D. H. Kook, Y. S. Kim. J. Nucl. Mater. 456, 235 (2015). Crossref
12. M. C. Billone, T. A. Burtseva, R. E. Einziger. J. Nucl. Mater. 433, 431 (2013). Crossref
13. D. G. Westlake. J. Nucl. Mater. 26, 208 (1968). Crossref
14. K. Une, K. Nogita, S. Ishimoto, K. Ogata. J. Nucl. Sci. Technol. 41, 731 (2004). Crossref
15. J. Li, Z. Wang, H. Wu, G. Chen. J. Nucl. Mater. 537, 152232 (2020). Crossref
16. V. Perovic, G. C. Weatherly, C. J. Simpson. Acta Metall. 31, 1381 (1983). Crossref
17. S. Neogy, D. Srivastava, R. Tewari, R. N. Singh, G. K. Dey, S. Banerjee. J. Nucl. Mater. 322, 195 (2003). Crossref
18. Q. Fang, M. R. Daymond, A. King. Mater. Charact. 134, 362 (2017). Crossref
19. W. Li, S. Hanlon, G. Bickel, A. Buyers, L. Walters, F. Long. J. Nucl. Mater. 539, 152316 (2020). Crossref
20. D. Hardie, M. W. Shanahan. J. Nucl. Mater. 55, 1 (1975). Crossref
21. J. B. Bai, N. Ji, D. Gilbon, C. Prioul, D. François. Metall. Mater. Trans. A. 25, 1199 (1994). Crossref
22. F. Feria, C. Aguado, L. E. Herranz. Ann. Nucl. Energy. 145, 107559 (2020). Crossref
23. A. R. Massih, L. O. Jernkvist. Comput. Mater. Sci. 46, 1091 (2009). Crossref
24. F. Passelaigue, E. Lacroix, G. Pastore, A. T. Motta. J. Nucl. Mater. 544, 152683 (2021). Crossref
25. K. S. Chan. J. Nucl. Mater. 227, 220 (1996). Crossref
26. M. Kolesnik, T. Aliev, V. Likhanskii. Comput. Mater. Sci. 189, 110260 (2021). Crossref
27. T. Aliev, M. Kolesnik, V. Likhanskii, V. Saiutina. J. Nucl. Mater. 557, 153230 (2021). Crossref
28. M. Kolesnik, T. Aliev. Phys. Met. Metallogr. (2023). In press.
29. M. Maric et al. J. Nucl. Mater. 559, 153442 (2022). Crossref
30. R. P. Sear. J. Phys. Condens. Matter. 19, 033101 (2007). Crossref
31. H. I. Aaronson, M. Enomoto, J. K. Lee. Mechanisms of Diffusion Phase Transformations in Metals and Alloys. CRC Press (2010) 667 p.
32. G. J. C. Carpenter. J. Nucl. Mater. 48, 264 (1973). Crossref
33. T. Aliev, M. Kolesnik. J. Phys. Commun. 5, 105005 (2021). Crossref
34. T. Kubo, Y. Kobayashi, H. Uchikoshi. J. Nucl. Mater. 427, 18 (2012). Crossref
35. C. E. Ells. J. Nucl. Mater. 35, 306 (1970). Crossref
36. M. Kolesnik, T. Aliev, V. Likhanskii. J. Nucl. Mater. 508, 567 (2018). Crossref
37. M. Aomi et al. J. ASTM Int. 5, 651 (2008). Crossref
38. M. C. Billone, T. A. Burtseva, Z. Han, Y. Y. Liu. Effects of Multiple Drying Cycles on High-Burnup PWR Cladding Alloys. Aragonne National Laboratory (2014). Available online https://www.energy.gov/sites/prod/files/2014/11/f19/FCRDUFD2014000052NosigDryCladAlloy.pdf.
39. L. G. Bell, R. G. Duncan. Hydride orientation in Zr-2.5 % Nb; how it is affected by stress, temperature and heat treatment. Pinawa, Manitoba, Canada. Atomic Energy of Canada Limited (1975) 31 p.
40. M. Nakatsuka, S. Yagnik. J. ASTM Int. 8, JA102954 (2010). Crossref
41. R. K. Sharma, A. K. Bind, G. Avinash, R. N. Singh, A. Tewari, B. P. Kashyap. J. Nucl. Mater. 508, 546 (2018). Crossref
42. V. M. A. Alvarez, J. R. Santisteban, P. Vizcaino, A. V. Flores, A. D. Banchik, J. Almer. Acta Mater. 60, 6892 (2012). Crossref
43. P. C. A. Simon, C. Frank, L. Q. Chen, M. R. Daymond, M. R. Tonks, A. T. Motta. J. Nucl. Mater. 547, 152817 (2021). Crossref
44. O. Zanellato et al. J. Nucl. Mater. 420, 537 (2012). Crossref
45. R. W. Cahn, P. Haasen. Physical Metallurgy. 4th ed. North-Holland (1996) 4911 p.

Другие статьи на эту тему

Финансирование на английском языке