Quasi-static crack growth in three-layer media: a numerical experiment

Получена 06 декабря 2022; Принята 12 июня 2023;
Эта работа написана на английском языке
Цитирование: R.L. Lapin, V.A. Kuzkin, A.M. Krivtsov. Quasi-static crack growth in three-layer media: a numerical experiment. Письма о материалах. 2023. Т.13. №3. С.272-277
BibTex   https://doi.org/10.22226/2410-3535-2023-3-272-277

Аннотация

Dependence of the crack shape (length/height ratio) for three-layer material with layers having different strength.Quasi-static growth of planar three-dimensional cracks in homogeneous and three-layer media is studied numerically using the particle dynamics method. It is shown that in the homogeneous medium cracks with different convex and nonconvex initial shapes tend to become circular (penny-shaped). The crack “forgets” its initial chape approximately when its front reaches the corresponding circumscribed circle and further propagates in the penny-shaped mode. In the three-layer medium, a crack grows in the plane orthogonal to the layers, having either different Young’s moduli or different strength. In simulations, the ratio of crack’s length (size along the layers) to its height (size across the layers) is calculated. It is shown that with increasing crack volume the ratio tends to some limiting value, dete272rmined by contrast in properties of the layers. Empirical dependencies of the limiting length/height ratio on parameters of the layers are derived. The conditions, corresponding to arresting of the crack in the central layer, are estimated.

Ссылки (22)

1. M. Comninou. Eng. Fract. Mech. 37 (1), 197 (1990).
2. M.-Y. He, J. W. Hutchinson. Int. J. Sol. Struct. 25 (9), 1053 (1989). Crossref
3. T. Siegmund, N. A. Fleck, A. Needleman. Int. J. Fract. 85 (4), 381 (1997). Crossref
4. M. M. Khasanov, G. V. Paderin, E. V. Shel, A. A. Yakovlev, A. A. Pustovskikh. Neftyanoe khozyaystvo-Oil Industry. 12, 37 (2017). Crossref
5. H. Gu, E. Siebrits. SPE Production & Operations. 23 (02), 170 (2008). Crossref
6. E. Shel. SPE Russian Petroleum Technology Conference, Moscow, Russia, SPE-187834-MS (2017). Crossref
7. A. M. Linkov. J. Appl. Math. Mech. 79 (1), 54 (2015). Crossref
8. A. M. Linkov. Dokl. Phys. 61 (7), 350 (2016). Crossref
9. A. M. Linkov. Boundary integral equations in elasticity theory. Springer Science and Business Media (2013) 99 p. Crossref
10. A. M. Linkov, A. A. Linkova, A. A. Savitski. Int. J. Dam. Mech. 3 (4), 338 (1994). Crossref
11. N. S. Markov, A. M. Linkov. Mater. Phys. Mech. 32 (2), 133 (2017). Crossref
12. G. S. Mishuris. Mech. Compos. Mater. 34, 439 (1998). Crossref
13. A. M. Krivtsov. Deformation and fracture of solids with microstructure. Moscow, Fizmatlit (2007) 304 p. (in Russian) [Деформирование и разрушение твердых тел с микроструктурой. Москва, Физматлит (2007) 304 с.].
14. B. Damjanac, P. Cundal. Comput. Geotech. 71, 283 (2016). Crossref
15. A. M. Krivtsov. Int. J. Imp. Eng. 23, 477 (1999). Crossref
16. A. M. Krivtsov. Meccanica. 38 (1), 61 (2003). Crossref
17. D. A. Indeitsev, A. M. Krivtsov, P. V. Tkachev. Dokl. Phys. 51 (3), 154 (2006). Crossref
18. V. A. Tsaplin, V. A. Kuzkin. Mater. Phys. Mech. 32 (3), 321 (2017).
19. R. A. Jarvis. Inf. Process. Lett. 2, 18 (1973). Crossref
20. P. Livieri, F. Segala. Eng. Fract. Mech. 77 (11), 1656 (2010). Crossref
21. V. Lazarus. J. Mech. Phys. Sol. 59, 121 (2011). Crossref
22. R. V. Goldstein, V. M. Entov. Qualitative Methods in Continuum Mechanics. Nauka, Moscow (1989) 224 p. (in Russian) [Р. В. Гольдштейн, В. М. Ентов. Качественные методы в механике сплошных сред. Наука, Москва (1989) 224 с.].

Другие статьи на эту тему

Финансирование на английском языке

1. Russian Science Foundation - 21-11-00378