Strain-rate dependent deformation behavior of additively manufactured stainless steel with different fractions of δ-ferrite

S.V. Astafurov, E.V. Melnikov ORCID logo , M.Y. Panchenko, K.A. Reunova, A.V. Luchin ORCID logo , E.A. Zagibalova, E.G. Astafurova, E.A. Kolubaev показать трудоустройства и электронную почту
Получена 26 октября 2022; Принята 05 декабря 2022;
Эта работа написана на английском языке
Цитирование: S.V. Astafurov, E.V. Melnikov, M.Y. Panchenko, K.A. Reunova, A.V. Luchin, E.A. Zagibalova, E.G. Astafurova, E.A. Kolubaev. Strain-rate dependent deformation behavior of additively manufactured stainless steel with different fractions of δ-ferrite. Письма о материалах. 2023. Т.13. №1. С.28-32
BibTex   https://doi.org/10.22226/2410-3535-2023-1-28-32

Аннотация

Regardless of δ-ferrite fraction in the additively manufactured CrNi stainless, the increase in strain rate slows down the kinetics of strain-induced γ→α' martensitic transformation, but weakly influences the stress and strain, at which the macroscopic transformation stage starts.The effect of strain rate on the tensile deformation behavior of additively manufactured CrNi stainless steel with different fractions of δ-ferrite (14 % in the as-built material and 6 % after the post-built solid-solution treatment) was revealed with the focus on the deformation stage of macroscopic strain-induced γ → α' martensitic transformation. Tension tests were performed with the initial strain rates of 5 ×10−4, 5 ×10−3, and 5 ×10−2 s−1 at two different temperatures, at which slow (300 K) and fast (183 K) kinetics of martensitic transformation were realized. Post-built solid-solution treatment provided a partial dissolution of the δ-ferrite in the additively manufactured steel specimens and assisted higher strain hardening at the stage associated with γ → α' martensitic transformation. Independently on δ-ferrite fraction and test temperature, an increase in the strain rate weakly influences the stress and strain, at which the stage of macroscopic strain-induced transformation starts, but visibly decreases the strain hardening rate at this deformation stage. The latter testifies the slower kinetics of strain-induced martensitic transformation at higher strain rates.

Ссылки (20)

1. D. Ding, Z. I. Pan, D. Cuiuri, H. Li. Int. J. Adv. Manuf. Technol. 81, 465 (2015). Crossref
2. I. Gibson, D. Rosen, B. Stucker, M. Khorasani. Additive Manufacturing Technologies, 3d edition. Springer (2021) 675 p. Crossref
3. E. A. Kolubaev, V. E. Rubtsov, A. V. Chumaevskii, E. G. Astafurova. Physical Mesomechanics. 25 (4), 5 (2022). (in Russian) [Е. А. Колубаев, В. Е. Рубцов, А. В. Чумаевский, Е. Г. Астафурова. Физическая мезомеханика. 25 (4), 5 (2022).]. Crossref
4. D. Svetlizky, M. Das, B. Zheng, A. L. Vyatskikh, S. Bose, A. Bandyopadhyay, J. M. Schoenung, E. J. Lavernia, N. Eliaz. Mater. Today. 49, 271 (2021). Crossref
5. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann. Acta Mater. 117, 371 (2016). Crossref
6. S. Astafurov, E. Astafurova. Metals. 11 (7), 1052 (2021). Crossref
7. P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E. A. Jägle. Mater. Sci. Eng. A. 772, 138633 (2020). Crossref
8. E. G. Astafurova, M. Yu. Panchenko, V. A. Moskvina, G. G. Maier, S. V. Astafurov, E. V. Melnikov, A. S. Fortuna, K. A. Reunova, V. E. Rubtsov, E. A. Kolubaev. J. Mater. Sci. 55, 9211 (2020). Crossref
9. E. G. Astafurova, V. A. Moskvina, M. Yu. Panchenko, S. V. Astafurov, E. V. Melnikov, G. G. Maier, K. A. Reunova, V. E. Rubtsov, E. A. Kolubaev. Russian Phys. J. 63, 6 (2020). Crossref
10. E. V. Melnikov, E. G. Astafurova, S. V. Astafurov, G. G. Maier, V. A. Moskvina, M. Y. Panchenko, S. V. Fortuna, V. E. Rubtsov, E. A. Kolubaev. Letters on Materials. 9 (4), 460 (2019). Crossref
11. Martensite (ed. by G. B. Olson, W. S. Owen). ASM International (1992) 331 p.
12. K. Spencer, M. Veron, K. Yu-Zhang, J. D. Embury. Mat. Sci. Techn. 25, 7 (2009). Crossref
13. D. Kaoumi, J. Liu. Mater. Sci. Eng. A. 715, 73 (2018). Crossref
14. V. E. Ol’shanetskii, G. V. Snezhnoi, V. L. Snezhnoi. Met. Sci. Heat Treat. 60 (3-4), 165 (2018). Crossref
15. V. Seetharaman, R. Krishnan. J. Mater. Sci. 16, 523 (1981). Crossref
16. I. V. Kireeva, Yu. I. Chumlyakov. Mater. Sci. Eng. A. 481 - 482, 737 (2008). Crossref
17. K. De, J. G. Speer, D. K. Matlock. Metall. Mater. Trans. A. 37A, 1875 (2006). Crossref
18. S. Ganesh Sundara Raman, K. A. Padmanabhan. J. Mater. Sci. Lett. 13, 389 (1994). Crossref
19. Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng, X. Chen, B. An. Mater. Sci. Eng. A. 740, 420 (2019). Crossref
20. N. I. Vázquez-Fernández, T. Nyyssönen, M. Isakov, M. Hokka, V. T. Kuokkala. Acta Mater. 176, 134 (2019). Crossref

Финансирование на английском языке

1. Ministry of Science and Higher Education of the Russian Federation - FWRW-2022-0005