Features of phase formation of pyrochlore-type Bi2Cr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Ta2O9+Δ

E.P. Rylchenko, B.A. Makeev ORCID logo , D.V. Sivkov, R.I. Korolev, N.A. Zhuk показать трудоустройства и электронную почту
Получена 31 августа 2022; Принята 23 ноября 2022;
Эта работа написана на английском языке
Цитирование: E.P. Rylchenko, B.A. Makeev, D.V. Sivkov, R.I. Korolev, N.A. Zhuk. Features of phase formation of pyrochlore-type Bi2Cr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Ta2O9+Δ. Письма о материалах. 2022. Т.12. №4s. С.486-492
BibTex   https://doi.org/10.22226/2410-3535-2022-4-486-492

Аннотация

The study of the process of phase formation of multicomponent pyrochlore (Bi2-хCr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Ta2O9+Δ) in the course of solid-phase synthesis showed that the precursor of the pyrochlore phase is bismuth orthotantalate. Of all the precursors, cobalt and nickel oxides are the last to enter the chemical reaction (at 850-900 С). Intermediate phases in the course of synthesis are complex oxides Bi16CrO27, Bi25FeO40, BiTaO4, Bi3TaO7, СoTa2O6.The study of the process of phase formation of multicomponent pyrochlore (Bi2−хCr1 / 6Mn1 / 6Fe1 / 6Co1 / 6Ni1 / 6Cu1 / 6Ta2O9+Δ) in the course of solid-phase synthesis showed that the precursor of the pyrochlore phase is bismuth orthotantalate. Of all the precursors, cobalt and nickel oxides are the last to enter the chemical reaction (at 850 – 900°С). Intermediate phases in the course of synthesis are complex oxides Bi16CrO27, Bi25FeO40, BiTaO4, Bi3TaO7, СoTa2O6. During the evolution of the pyrochlore phase, a nonmonotonic change in the unit cell parameter is observed. Phase-clean pyrochlore is synthesized at a temperature of 1000 –1050°С. Ceramics is characterized by a porous, loose microstructure with an average grain size of 0.5 –1 μm; the porosity of a sample calcined at 1050°С is 19 percent.

Ссылки (32)

1. S. Murugesan, M. N. Huda, Y. Yan, M. M. Al-Jassim, V. Subramanian. J. Phys. Chem. 114, 10598 (2010). Crossref
2. J. Pandey, V. Shrivastava, R. Nagarajan. Inorg. Chem. 57, 13667 (2018). Crossref
3. C. C. Khaw, K. B. Tan, C. K. Lee. Ceram. Intern. 35, 1473 (2009). Crossref
4. N. A. Zhuk, M. G. Krzhizhanovskaya. Ceram. Int. 47, 30099 (2021). Crossref
5. M. A. Subramanian, G. Aravamudan, G. V. Subba Rao. Prog. Sol. St. Chem. 15, 55 (1983). Crossref
6. R. A. McCauley. J. Appl. Phys. 51, 290 (1980). Crossref
7. T. A. Vanderah, M. W. Lufaso, A. U. Adler, I. Levin, J. C. Nino, V. Provenzano, P. K. Schenck. J. Sol. St. Chem. 179, 3467 (2006). Crossref
8. T. A. Vanderah, T. Siegrist, M. W. Lufaso, M. C. Yeager, R. S. Roth, J. C. Nino, S. Yates. Eur. J. Inorgan. Chem. 2006, 4908 (2006). Crossref
9. M. W. Lufaso, T. A. Vanderah, I. M. Pazos, I. Levin, R. S. Roth, J. C. Nino, V. Provenzano, P. K. Schenck. J. Sol. St. Chem. 179, 3900 (2006). Crossref
10. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, S. V. Nekipelov, D. V. Sivkov, V. N. Sivkov, A. M. Lebedev, R. G. Chumakov, B. A. Makeev, V. V. Kharton, V. V. Panova, R. I. Korolev. Sol. St. Sci. 125, 106820 (2022). Crossref
11. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, S. V. Nekipelov, V. V. Kharton, N. A. Sekushin. Inorgan. Chem. 60, 4924 (2021). Crossref
12. M. P. Chon, K. B. Tan, C. C. Khaw, Z. Zainal, Y. H. Taufiq-Yap, S. K. Chen, P. Y. Tan. J. Alloys Comp. 675, 116 (2016). Crossref
13. M. Valant, D. Suvorov. J. Am. Ceram. Soc. 88, 2540 (2005). Crossref
14. F. A. Jusoh, K. B. Tan, Z. Zainal, S. K. Chen, C. C. Khaw, O. J. Lee. J. Mater. Res. Techn. 9, 11022 (2020). Crossref
15. P. Y. Tan, K. B. Tan, C. Khaw, Z. Zainal, S. K. Chen, M. P. Chon. Ceram. Intern. 38, 5401 (2012). Crossref
16. J. C. Nino, M. T. Lanagan, C. A. Randall. J. Appl. Phys. 89, 4512 (2001). Crossref
17. C. Ang, Z. Yu, H. J. Yuon, C. A. Randall. Appl. Phys. Lett. 80, 4807 (2002). Crossref
18. S. Kamba, V. Porokhovskyy, A. Pashkin. Phys. Rev. B: Condens. Matter. 66, 1 (2002). Crossref
19. M. Valant. J. Am. Ceram. Soc. 92, 955 (2009). Crossref
20. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, N. A. Sekushin, S. V. Nekipelov, V. V. Kharton, B. A. Makeev, V. P. Lutoev, Y. D. Sennikova. Inorg. Chem. 61, 4270 (2022). Crossref
21. N. A. Zhuk, N. А. Sekushin, M. G. Krzhizhanovskaya, V. V. Kharton. Sol. St. Ion. 377, 115868 (2022). Crossref
22. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, A. A. Reveguk, D. V. Sivkov, S. V. Nekipelov. Ceram. Intern. 48, 14849 (2022). Crossref
23. Ismunandar, T. Kamiyama, K. Oikawa, A. Hoshikawa, B. J. Kennedy, Y. Kubota, K. Kato. Mater. Res. Bull. 39, 553 (2004). Crossref
24. L. G. Akselrud, Yu. N. Grin, P. Yu. Zavalij, et al. CSD-universal program package for single crystal or powder structure data treatment. Thes. Rep. XII Eur. Crystallogr. Meet. (1989) p. 155.
25. N. A. Zhuk, M. G. Krzhizhanovskaya, V. A. Belyy, V. V. Kharton, A. I. Chichineva. Chem. Mater. 32, 5493 (2020). Crossref
26. X. Zhou, J. Yan, G. Wang, S. Wang, L. Liu, G. Shu. Can. Mineral. 35, 35 (1997).
27. D. C. Craid, N. C. Stephenson. J. Sol. St. Chem. 15, 1 (1975). Crossref
28. A. Maitre, M. Francois, J. C. Gachon. J. Phase Equilibria and Diffusion. 25, 59 (2004). Crossref
29. M. Struzik, X. Liu, I. Abrahams, F. Krok, M. Malys, J. R. Dygas. Solid State Ionics. 218, 25 (2012). Crossref
30. G. Gattow, D. Schultze. Bismuth Oxides: VI. Anorg. Allg. Chem. 328, 44 (1964).
31. V. A. Murav’ev, B. A. Makeev, M. G. Krzhizhanovskaya, R. I. Korolev, N. A. Zhuk. Glass Ceram. 79, 70 (2022). Crossref
32. J. C. Nino, M. T. Lanagan, C. A. Randall. J. Mater. Res. 16, 1460 (2001). Crossref