Optical and electrical properties of a new complex oxide Pb1 / 3Na1 / 3K1 / 3Ta2 / 3Fe1 / 3O3-δ with perovskite structure

N.A. Zhuk, A.M. Popov, R.I. Korolev, V.V. Moroz, A.A. Selyutin, A.V. Koroleva, N.A. Sekushin, B.A. Makeev ORCID logo показать трудоустройства и электронную почту
Получена 18 августа 2022; Принята 24 октября 2022;
Эта работа написана на английском языке
Цитирование: N.A. Zhuk, A.M. Popov, R.I. Korolev, V.V. Moroz, A.A. Selyutin, A.V. Koroleva, N.A. Sekushin, B.A. Makeev. Optical and electrical properties of a new complex oxide Pb1 / 3Na1 / 3K1 / 3Ta2 / 3Fe1 / 3O3-δ with perovskite structure. Письма о материалах. 2022. Т.12. №4. С.367-372
BibTex   https://doi.org/10.22226/2410-3535-2022-4-367-372

Аннотация

A cubic perovskite of complex composition Pb1/3Na1/3K1/3Ta2/3Fe1/3O3-δ (sp. gr. Pm-3m, a = 3.9767(3) Å) was synthesized for the first time by the solid-phase reaction method.A cubic perovskite of complex composition Pb1 / 3Na1 / 3K1 / 3Ta2 / 3Fe1 / 3O3−δ (sp. gr. Pm-3m, a = 3.9767(3) Å) was synthesized for the first time by the solid-phase reaction method. The samples are characterized by an almost pore-free microstructure formed by slightly melted randomly oriented cubic crystallites. The band gap (≈2.05 eV) of a complex perovskite for a direct allowed electronic transition was calculated from the data of the diffuse reflection spectrum. According to impedance spectroscopy data, three polarization processes are observed in the sample at room temperature: low-frequency (at a frequency less than 300 Hz), medium-frequency (from 300 Hz to 10 kHz), and high-frequency (from 100 kHz to 10 MHz) ones. The permittivity of the sample at room temperature and a frequency of 107 Hz reaches high values of about 147, and the dielectric loss tangent does not exceed 0.12.

Ссылки (34)

1. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi. J. Am. Ceram. Soc. 66 (6), 421 (1983). Crossref
2. A. Dutta, T. P. Sinha. Materials Research Bulletin, 46 (4), 518 (2011). Crossref
3. H. Tamura, T. Konoike, Y. Sakabe, K. Wakino. Communications of the American Ceramic Society. 67 (4), c59 (1984). Crossref
4. O. I. Prokopalo, I. P. Raevsky. Electrophysical properties of perovskite family oxides. Rostov University (1985) 104 p.
5. R. I. Scott, M. Thomas, C. Hampson. J. Eur. Ceram. Soc. 23, 2467 (2003). Crossref
6. S. B. Desu, H. M. O’bryan. J. Am. Ceram. Soc. 68 (10), 546 (1985). Crossref
7. A. S. Bhalla, R. Guo, R. Roy. Materials Research Innovations, 4 (1), 3 (2000). Crossref
8. P. K. Davies, T. Jianzhu. J. Am. Ceram. Soc. 80 (7), 1727 (1997). Crossref
9. F. Galasso, J. Pinto. Nature. 207 (4992), 70 (1965). Crossref
10. R. Zurmühlen, E. Colla, D. Dube, J. Petzelt, I. Reaney, A. Bell, N. Setter. Journal of Applied Physics. 76 (10), 5864 (1994). Crossref
11. F. Galasso, J. Pyle. Inorg. Chem. 2 (3), 482 (1963). Crossref
12. F. Galasso, J. Pyle. J. Phys. Chem. 67, 1561 (1963). Crossref
13. A. J. Jacobson, B. M. Collins, B. E. F. Fender. Inorg. Chem. 32 (4), 1083 (1976). Crossref
14. I.-T. Kim, T.-S. Oh, Y.-H. Kim. J Mater Sci Lett. 12, 182 (1993). Crossref
15. B.-K. Kim, H.-O. Hamaguchi, I.-T. Kim. J. Am. Ceram. Soc. 78, 3117 (1995). Crossref
16. R. Zurmühlen, J. Petzelt, S. Kamba, G. Kozlov, A. Volkov, B. Gorshunov, D. Dube, A. Tagantsev, N. Setter. Journal of Applied Physics. 77 (10), 5351 (1995). Crossref
17. T. Mitsuhiro, K. Kageyama. J. Am. Chem. Soc. 72 (10), 1955 (1989). Crossref
18. A. Dutta, T. Sinha. Physical Review B. 76 (15), 155113 (2007). Crossref
19. F. Galasso, L. Katz, R. Ward. J. Am. Chem. Soc. 81 (4), 820 (1959). Crossref
20. F. Galasso. The Journal of Chemical Physics. 44 (7), 2703 (1966). Crossref
21. W.-H. Jung, J.-H. Lee, J.-H. Sohn, H.-D. Nam, S.-H. Cho. Materials Letters. 56 (3), 334 (2002). Crossref
22. G. Li, S. Liu, F. Liao, S. Tian, X. Jing, J. Lin, Y. Uesu, K. Kohn, K. Saitoh, M. Terauchi, N. Di, Z. Cheng. J. Sol. St. Chem. 177 (4-5), 1695 (2004). Crossref
23. Z. Wang, X. M. Chen, L. Ni, Y. Y. Liu, X. Q. Liu. Applied Physics Letters. 90 (10), 102905 (2007). Crossref
24. S. P. Kubrin, S. I. Raevskaya, S. A. Kuropatkina, D. A. Sarychev, I. P. Raevski. Ferroelectrics. 340 (1), 155 (2006). Crossref
25. I. P. Raevski, S. A. Prosandeev, S. A. Bogatina, M. A. Malitskaya, L. Jastrabik. Integrated Ferroelectrics. 55 (1), 757 (2003). Crossref
26. L. G. Akselrud, Yu. N. Grin, P. Yu. Zavalij, et al. CSD-universal program package for single crystal or powder structure data treatment. Thes. Rep. XII Eur. Crystallogr. Meet. (1989) p. 155.
27. R. D. Shannon. Acta Crystallogr. А. 32, 751 (1976). Crossref
28. M. J. Whitaker, J. F. Marco, F. J. Berry, C. Raith, E. Blackburn, C. Greaves. J. Solid St. Chem. 198, 316 (2013). Crossref
29. F. A. Jusoh, K. B. Tan, Z. Zainal, S. K. Chen, C. C. Khaw, O. J. Lee. J. Asian Ceram. Soc. 8, 957 (2020). Crossref
30. N. А. Zhuk, V. P. Lutoev, V. A. Belyy, B. А. Makeev, D. S. Beznosikov, S. V. Nekipelov, M. V. Yermolina. Phys. B: Condensed Matter. 552, 142 (2019). Crossref
31. S. A. Ivanov, P. Nordblad, R. Tellgren, T. Ericsson, H. Rundlof. Solid State Sciences. 9 (5), 440 (2007). Crossref
32. T. Yamashita, P. Hayes. Appl. Surface Sci. 254 (8), 2441 (2008). Crossref
33. J. F. Moulder. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation (1992) 261 p.
34. Subhashini, H. D. Shashikala, N. K. Udayashankar. Ceram. Intern. 46 (4), 5213 (2020). Crossref

Другие статьи на эту тему