Alumina-based ceramics reinforced with calcium hexaaluminate

N.Y. Cherkasova ORCID logo , R.I. Kuzmin, A.V. Felofyanova, K.A. Antropova, R.R. Khabirov, N.Y. Burkhinova показать трудоустройства и электронную почту
Получена 03 апреля 2022; Принята 02 июня 2022;
Эта работа написана на английском языке
Цитирование: N.Y. Cherkasova, R.I. Kuzmin, A.V. Felofyanova, K.A. Antropova, R.R. Khabirov, N.Y. Burkhinova. Alumina-based ceramics reinforced with calcium hexaaluminate. Письма о материалах. 2022. Т.12. №3. С.197-202
BibTex   https://doi.org/10.22226/2410-3535-2022-3-197-202

Аннотация

The formation of CaAl12O19 platelets in sintered Al2O3-ceramics leads to the increase in fracture toughness by 48% (up to 5.2±0.4 MPa*m1/2).In this study, alumina ceramics containing calcium hexaaluminate are investigated. The specimens are obtained by axial pressing of granulated powders and pressureless sintering. Fracture toughness is tested using the indentation method. Microhardness is determined by the Vickers method. XRD and microstructural studies using a scanning electron microscope are carried out. It was found that the use of Ca(OH)2 leads to the formation of CaAl12O19 in sintered alumina ceramics. As the platelet content increases, the average length of the platelets increases from 2 to 3 µm. The width of the platelets is about 0.4 µm. Increasing the CaAl12O19 content decreases the size of Al2O3 grains. The average grain size of the alumina ceramics is 1.65 ± 0.02 µm. For the material containing 6 wt.% CaAl12O19 the average grain size is 0.95 ± 0.05 μm. An increase in the critical stress intensity factor for the formation of 6 wt.% CaAl12O19 in a material compared to alumina ceramics without additives has been established. The relative density of such a material is 95.3 ± 0.5 %, microhardness is 1800 ± 50 HV, fracture toughness is 5.2 ± 0.4 MPa ∙ m1 / 2. The increase in fracture toughness of composites containing CaAl12O19 platelets is due to the fracture of platelets, crack bridging and crack deflection.

Ссылки (35)

1. M. Tian, X. D. Wang, T. Zhang. Catal. Sci. Technol. 6, 1984 (2016). Crossref
2. G. Pezzotti. Acta Metall. Mater. 41, 1825 (1993). Crossref
3. M. Machida, A. Sato, T. Kijima, H. Inoue, K. Eguchi, H. Arai. Catal. Today. 26, 239 (1995). Crossref
4. M. Machida, K. Eguchi, H. Arai. J. Am. Ceram. Soc. 71, 1142 (1988). Crossref
5. L. Liu, Y. Takasu, T. Onda, Z.-C. Chen. Ceram. Int. 46, 3738 (2020). Crossref
6. L. I. Podzorova, A. A. Il’icheva, V. P. Sirotinkin, O. S. Antonova, A. S. Baikin, V. E. Kutuzova, O. I. Pen’kova. Glas. Ceram. (English Transl. Steklo i Keramika). 78, 231 (2021). Crossref
7. V. Sirotinkin, L. Podzorova, A. Il’icheva. Mater. Chem. Phys. 277, 125496 (2022). Crossref
8. S. M. Naga, M. Elshaer, M. Awaad, A. A. Amer. Mater. Chem. Phys. 232, 23 (2019). Crossref
9. X. Huang, J. Cui, K. Guan, P. Rao. J. Aust. Ceram. Soc. 57, 1407 (2021). Crossref
10. S. M. Naga, A. M. Hassan, H. F. El-Maghraby, M. Awaad, H. Elsayed. Int. J. Refract. Met. Hard Mater. 54, 230 (2016). Crossref
11. Z. Chen, K. Chawla, M. Koopman. Mater. Sci. Eng. A. 367, 24 (2004). Crossref
12. S. Ori, T. Kojima, T. Hara, N. Uekawa, K. Kakegawa. J. Ceram. Soc. Japan. 120, 111 (2012). Crossref
13. R. Salomão, V. L. Ferreira, I. R. de Oliveira, A. D. V. Souza, W. R. Correr. J. Eur. Ceram. Soc. 36, 4225 (2016). Crossref
14. K. Vishista, F. D. Gnanam, H. Awaji. J. Am. Ceram. Soc. 88, 1175 (2005). Crossref
15. Z. D. I. Sktani, N. A. Rejab, Z. A. Ahmad. Int. J. Refract. Met. Hard Mater. 79, 60 (2019). Crossref
16. J. Sun, J. Wang, Y. Hui, X. Chen. Ceram. Int. 46, 4174 (2020). Crossref
17. Z. D. I. Sktani, N. A. Rejab, A. F. Z. Rosli, A. Arab, Z. A. Ahmad. J. Rare Earths. 39 (7), 844 (2020). Crossref
18. L. I. Podzorova, A. A. Il’icheva, O. I. Pen’kova, O. S. Antonova, A. S. Baikin, A. A. Konovalov. Inorg. Mater. 55, 628 (2019). Crossref
19. A. J. Sánchez-Herencia, R. Moreno, C. Baudín. J. Eur. Ceram. Soc. 20, 2575 (2000). Crossref
20. K. Cui, T. Fu, Y. Zhang, J. Wang, H. Mao, T. Tan. J. Eur. Ceram. Soc. 41 (15), 7935 (2021). Crossref
21. D. Asmi, I. M. Low. J. Mater. Sci. Lett. 17, 1735 (1998). Crossref
22. Z. D. I. Sktani, M. M. Ratnam, Z. A. Ahmad. J. Aust. Ceram. Soc. 52, 167 (2016).
23. U. Salma, A. Rafferty, M. Hasanuzzaman. 1 - 15 (2022). Crossref
24. F. Konstantiniuk, M. Tkadletz, C. Kainz, C. Czettl, N. Schalk. Surf. Coatings Technol. 410, 126959 (2021). Crossref
25. K. Niihara, R. Morena, D. P. H. Hasselman. J. Mater. Sci. Lett. 1, 13 (1982). Crossref
26. D. A. Rani, Y. Yoshizawa, K. Hirao, Y. Yamauchi. J. Am. Ceram. Soc. 87, 289 (2004). Crossref
27. M. A. Gülgün, R. Voytovych, I. Maclaren, M. Rühle, R. M. Cannon. Interface Sci. 10, 99 (2002). Crossref
28. N. Cherkasova, S. Veselov, A. Bataev, R. Kuzmin, N. Stukacheva. Mater. Chem. Phys. 259, 123938 (2021). Crossref
29. A. Altay, M. A. Gülgün. J. Am. Ceram. Soc. 86, 623 (2003). Crossref
30. A. L. N. Stevels, A. D. M. Schrama‐de Pauw. J. Electrochem. Soc. 123, 691 (1976). Crossref
31. P.-L. Chen, I.-W. Chen. J. Am. Ceram. Soc. 75, 2610 (1992). Crossref
32. X. Zhang, J. Liang, J. Li, Y. Zeng, S. Hao, P. Liu, H. Na. Mater. Charact. 186, 111810 (2022). Crossref
33. S. Shi, S. Cho, T. Goto, T. Sekino. J. Alloys Compd. 835, 155427 (2020). Crossref
34. S. Shi, S. Cho, T. Goto, T. Kusunose, T. Sekino. Ceram. Int. 44, 18382 (2018). Crossref
35. S. Shi, S. Cho, T. Goto, T. Sekino. Int. J. Appl. Ceram. Technol. 18, 170 (2021). Crossref

Другие статьи на эту тему

Финансирование на английском языке

1. Russian Science Foundation - 21-79-00306