New low-activation austenitic steel for nuclear power engineering

I.Y. Litovchenko, S.A. Akkuzin, N.A. Polekhina, K.V. Almaeva ORCID logo , E.N. Moskvichev ORCID logo , A.V. Kim, V.V. Linnik ORCID logo , V.M. Chernov показать трудоустройства и электронную почту
Получена 13 сентября 2022; Принята 17 октября 2022;
Эта работа написана на английском языке
Цитирование: I.Y. Litovchenko, S.A. Akkuzin, N.A. Polekhina, K.V. Almaeva, E.N. Moskvichev, A.V. Kim, V.V. Linnik, V.M. Chernov. New low-activation austenitic steel for nuclear power engineering. Письма о материалах. 2022. Т.12. №4s. С.399-403
BibTex   https://doi.org/10.22226/2410-3535-2022-4-399-403

Аннотация

A new low-activation chromium-manganese austenitic steel for nuclear power engineering with an increased manganese content and additional alloying with strong carbide formers has been fabricated. The new steel has improved strength and ductility properties compared to known analogues.Vacuum induction melting is used to fabricate a new low-activation chromium-manganese austenitic steel with an increased, compared to well-known analogues, manganese content and additional alloying with strong carbide-forming elements (with a high tendency to carbide formation). Using the methods of transmission and scanning electron microscopy, the features of its microstructure, elemental and phase compositions in the solution treated state are studied. It is shown that the steel has an austenitic structure with a grain size of tens of micrometers. Its dislocation substructure is represented by flat dislocation pileups, which is typical for materials with low stacking fault energy. Coarse (submicron) particles of MC carbides (M = Ti, Ta, Zr, W) are found along the boundaries and inside the grains. Nanosized particles of the MC type fix the grain and subgrain boundaries and the dislocation substructure of the steel. Mechanical tensile tests are carried out at room and elevated temperatures. It is shown that the new steel has higher yield and tensile strength values, as well as elongation to failure compared to the austenitic chromium-nickel steels currently used in nuclear power engineering and well-known chromium-manganese low-activation steels.

Ссылки (21)

1. Y. Pascal. Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing Series in Energy: Number 106, Kindle Edition (2020) 644 p.
2. G. S. Was, D. Petti, S. Ukai, S. Zinkle, J. Nucl. Mater. 527, 151837 (2019). Crossref
3. F. A. Garner. Comprehensive Nuclear Materials. 2nd edition. 3, 57 (2020). Crossref
4. R. G. Odette, S. J. Zinkle. Structural Alloys for Nuclear Energy Applications. Elsevier (2019) 655 p.
5. L. I. Ivanov, Yu. M. Platov. Radiation physics of metals and its applications. Moscow, Interkontakt Nauka (2002) 300 p. (in Russian) [Л. И. Иванов, Ю. М. Платов. Москва, Интерконтакт Наука (2002) 300 с.].
6. V. M. Chernov, M. V. Leonteva-Smirnova, M. M. Potapenko, et. al. Nucl. Fusion. 47, 839 (2007). Crossref
7. R. L. Klueh, N. Hashimoto, P. J. Maziasz. J. Nucl. Mater. 367, 48 (2007). Crossref
8. N. A. Polekhina, I. Yu. Litovchenko, A. N. Tyumentsev, D. A. Kravchenko, V. M. Chernov, M. V. Leontyeva-Smirnova. Tech. Phys. 62 (5), 736 (2017). Crossref
9. N. A. Polekhina, I. Yu. Litovchenko, K. V. Almaeva, A. N. Tyumentsev, V. M. Chernov, M. V. Leontyeva-Smirnova. Inorg. Mater.: Applied Research. 13 (5), 1247 (2022). Crossref
10. I. Litovchenko, K. Almaeva, N. Polekhina, S. Akkuzin, V. Linnik, E. Moskvichev, V. Chernov, M. Leontyeva-Smirnova. Met. 12, 79 (2022). Crossref
11. E. V. Demina, M. D. Prusakova, V. V. Roshchin, N. A. Vinogradova, G. D. Orlova. Inorg. Mater.: Applied Research. 1, 115 (2010). Crossref
12. E. V. Demina, L. I. Ivanov, Yu. M. Platov, M. D. Prusakova, S. R. Eikholtser, M. B. Tolochko, F. A. Garner. Inorg. Mater.: Applied Research. 2, 457 (2011). Crossref
13. R. L. Klueh, P. J. Maziasz. Mater. Sci. Eng., A. 127, 17 (1990). Crossref
14. M. Onozuka, T. Saida, Sh. Hirai, M. Kusuhashi, I. Sato, T. Hatakeyama. J. Nucl. Mater. 255, 128 (1998). Crossref
15. Y. Suzuki, T. Saida, F. Kudough. J. of Nucl. Mater. 258, 1687 (1998). Crossref
16. M. M. Eissa, S. U. El-kameesy, S. A. El-Fiki, S. N. Ghali, R. M. El Shazlyc, A. Saeed. Fusion Eng. Des. 112, 130 (2016). Crossref
17. A. Saeed, R. M. El-Shazly, S. N. Ghali, S. Y. El-khamisy, S. A. El-Moneem El-fiki, M. M. Eissa. Nucl. Sci. 3, 45 (2018). Crossref
18. A. I. Blokhin, V. M. Chernov. Physics of Atomic Nuclei. 84 (7), 1272 (2021). Crossref
19. JMatPro. Practical software for materials properties: https://www.sentesoftware.co.uk/jmatpro (accessed on 2001).
20. S. A. Akkuzin, I. Yu. Litovchenko, A. N. Tyumentsev, V. M. Chernov. Rus. Phys. Journal. 62, 698 (2019). Crossref
21. S. Akkuzin, I. Litovchenko, N. Polekhina, K. Almaeva, A. Kim, E. Moskvichev, V. Chernov. Metals. 12, 63 (2022). Crossref

Другие статьи на эту тему

Финансирование на английском языке

1. Russian Science Foundation - 22-19-00802