Abstract
The influence of graphene nanoparticles on the physical and tribological properties of nanostructured composite coatings under plasma electrolytic oxidation (PEO) of aluminium alloy D16 in electrolytes with additives of graphene nanoparticles and graphene oxide was investigated. The structure of the coatings was analysed using micro-Raman spectroscopy with an excitation laser wavelength of 473 nm , along with optical and electron microscopy techniques. An abrasive wear test was conducted on a Calowear (CAW) machine using an aqueous diamond suspension as the abrasive. It was found that, the abrasive wear rate of the PEO coating with graphene nanoparticles is 15 –16 % lower than that of the PEO coating without additives. The micro-Raman spectroscopy showed significant differences in the structure of carbon nanoparticles in the upper soft and the following hard layer of the PEO coating. In the upper layer of the coating, the Raman spectra are close to those for graphene additives in the electrolyte. The micro-Raman spectra for the following hard layer indicate a significant disorder of graphene particles, a decrease in their size and the formation of SiC and carbon nanotubes inclusions. The micro-Raman spectroscopy shows amorphous structure of the top layer and crystalline α-Al2O3 inclusions in the following hard layer of the coatings. The found regularities explained within the framework on the significant influence of GNP particles on the PEO process.
References (36)
1. A. V. Apelfeld, P. N. Belkin, A. M. Borisov, I. V. Suminov, B. L. Krit, Modern technologies for modifying the surface of materials and applying protective coatings: in 3 volumes, V. 1: Microarc oxidation, Moscow, Renome, 2017, 647 p. (in Russian) [А.В. Эпельфельд, П.Н. Белкин, А.М Борисов, И.В. Суминов, Б.Л. Крит, Современные технологии модификации поверхности материалов и нанесения защитных покрытий: в 3-х т. Т.1: Микродуговое оксидирование, Москва, Реноме, 2017, 647 с.].
10.
S. Grigoriev, N. Peretyagin, A. Apelfeld, A. Smirnov, A. Morozov, E. Torskaya, M. Volosova, O. Yanushevich, N. Yarygin, N. Krikheli et al., Investigation of Tribological Characteristics of PEO Coatings Formed on Ti6Al4V Titanium Alloy in Electrolytes with Graphene Oxide Additives, Materials. 16 (2023) 392811. A. I. Komarov, Wear-resistant composite MDO coatings modified with carbon and ceramic nanoparticles, in: Advanced materials and technologies: monograph: in 2 vols. Vitebsk, Publishing house of the educational institution “VSTU”, 2017, V. 2, pp. 418 - 434. (in Russian) [А. И. Комаров, Износостойкие композиционные МДО-покрытия, модифицированные углеродными и керамическими наночастицами, Перспективные материалы и технологии: монография: в 2 т. Витебск, Изд-во УО «ВГТУ», 2017, Т. 2. С. 418 - 434.].
12. A. I. Komarov, V. I. Komarova, P. S. Zolotaya, Improvement of tribological properties of the piston alloy AK12M2MgN by ceramic coating modified by graphine-like carbon, Mechanics of machines, mechanisms and materials 39, 2 (2017) 39 - 44. (in Russian) [А. И. Комаров, В. И. Комарова, П. С. Золотая. Повышение трибомеханических свойств поршневого сплава АК12М2МгН керамическим покрытием, модифицированным графеноподобным углеродом, Механика машин, механизмов и материалов 39, 2 (2017) 39 - 44.].
13. A. I. Komarov, P. S. Zolotaya, N. I. Gorbachuk, About the role of graphene-like carbon in the formation of coatings by the method of microarc oxidation, Mechanics of machines, mechanisms and materials, 50, 1 (2020) 72 - 76. (in Russian) [А. И. Комаров, П. С. Золотая Н. И. Горбачук, О роли графеноподобного углерода в формировании покрытий методом микродугового оксидирования, Механика машин, механизмов и материалов 50, 1 (50) (2020) 72 - 76.].
16.
H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera Alonso, D. H. Adamson, R. K. Prudhomme, R. Car, D. A. Saville, I. A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem. B 110 (2006) 8535 - 853919. Z. Z. Qiu, R. Wang, J. Z. Wu, Y. S. Zhang, Y. F. Qu, X. H. Wu, Graphene oxide as a corrosion-inhibitive coating on magnesium alloys, RSC Adv. 5 (2015) 44149 - 44159.
21. RUSGRAFEN, a scientific and production company Webpage https://www.rusgraphene.ru/grafenoviy-poroshok/.
22. GRAFENOX, Webpage https://graphenox.ru/?ysclid=m2uepy51hb109164401.
23.
N. N. Andrianova, A. M. Borisov, V. A. Kazakov, E. S. Mashkova, V. P. Popov, Yu. N. Palyanov, R. N. Rizakhanov, S. K. Sigalaev, High-Fluence Ion-Beam Modification of a Diamond Surface at Elevated Temperature, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 9, 2 (2015) 346 - 34935.
Z. Guo, Z. Yang, Y. Chen, H. Li, Q. Zhao, Y. Xu, H. Zhan, J. Hao, Y. Zhao, One-step plasma electrolytic oxidation with Graphene oxide for Ultra-low porosity сorrosion-resistant TiO2 coatings, Applied Surface Science 594 (2022) 153477
Funding
1. Russian Science Foundation - №24-19-00811