Specific features of target pulse destruction under impact by an elongated solid

S.N. Buravova, E.V. Petrov, V.O. Kopytskiy show affiliations and emails
Received 07 February 2023; Accepted 25 May 2023;
Citation: S.N. Buravova, E.V. Petrov, V.O. Kopytskiy. Specific features of target pulse destruction under impact by an elongated solid. Lett. Mater., 2023, 13(3) 232-236
BibTex   https://doi.org/10.22226/2410-3535-2023-3-232-236


The impulse load wave pattern of the planar target with the simple shaped long-length impactor as a two-dimensional bar is presented. Needle-like spall fracture occurs under shock loading of the target surface with spherical particles.An analytical consideration of the penetration of a solid makes it possible to establish the periodical character of elongated impactor braking, the consequence of which is the target periodical loading with compression pulses coming from the impactor remote regions. The nature of target damaging is spalls, cracks and localized strain bands, which occur in the zones of unloading wave interference, the number of which increases with an increase in compression pulses coming to the target.

References (22)

1. C. Anderson Jr., D. Orphal. Int. J. Impact Eng. 35, 1386 (2008). Crossref
2. V. Mochalova, A. Utkin, V. Rykova, M. Shakula, V. Yakushev. J. Phys.: Conference Ser. 1609, 012011 (2020). Crossref
3. T. Xu, Y. Qiu, J. Li, Y. Cheng, W. Chen. Shock Vib. 1, 7320711 (2021). Crossref
4. N. Nechitailo. Procedia Eng. 103, 427 (2015). Crossref
5. S. Syngellakis. Sustainability. 126, 63 (2012). Crossref
6. J. Wang, J. Zhao, J. Zhang, Y. Zhou. Shock Vib. 1, 6666770 (2021). Crossref
7. C. Qi, J. Chen. J. Mech. Behav. Mater. 23, 21 (2014). Crossref
8. Y. Usherenko, V. Mironovs, V. Lapkovskis, S. Usherenko, V. Gluschenkov. Agronomy Res. 17, 45 (2019). Crossref
9. A. Belikova, S. Buravova, Yu. Gordopolov. Tech. Phys. 58, 302 (2013). Crossref
10. S. Buravova, E. Petrov. Russ. J. Phys. Chem. B. 14, 814 (2020). Crossref
11. S. Buravova, Yu. Gordopolov. Int. J. Fract. 170, 83 (2011). Crossref
12. M. Raftenberg. Int. J. Impact Eng. 25, 123 (2001). Crossref
13. D. Rittel, S. Osovski. Int. J. Fract. 162, 177 (2010). Crossref
14. G. Kanel, V. Fortov, S. Razorenov. Shock-Wave Phenomena and the Properties of Condensed Matter. New York, Springer (2004) 330 p. Crossref
15. S. Buravova, E. Petrov, A. Shchukin. Combust. Explos. Shock Waves. 52, 613 (2016). Crossref
16. J. Zhang, C. Tan, Y. Ren, X. Yu, H. Ma, F. Wang, H. Cai. Transactions Nonferrous Metals Soc. Ch. 21, 2396 (2011). Crossref
17. H. Arabnejad, S. Shirazi, B. McLaury, H. Subramani, L. Rhyne. Wear. 332, 1098 (2015). Crossref
18. Q. Wan, H. Jeon, R. Deiterding, V. Eliasson. J. Fluid Mech. 826, 732 (2017). Crossref
19. S. Buravova, E. Petrov, M. Alymov, V. Kopytskiy. Doklady Physics. 67, 447 (2022). Crossref
20. T. Wright, P. Perzyna. Camb. University Press (2002) 240 p.
21. J. Liu, Y. Long, C. Ji, Q. Xu, F. Gao, C. Zhao. Lat. Am. J. Solids Structures. 14, 685 (2017). Crossref
22. L. Barker, R. Hollenbach. J. Appl. Phys. 45, 4872 (1974). Crossref

Similar papers


1. Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences -