On selection of advanced compositions of flame resistant magnesium alloys

S.V. Zasypkin, D.L. Merson, A.I. Brilevsky ORCID logo , A.I. Irtegov show affiliations and emails
Received 24 January 2023; Accepted 11 April 2023;
Citation: S.V. Zasypkin, D.L. Merson, A.I. Brilevsky, A.I. Irtegov. On selection of advanced compositions of flame resistant magnesium alloys. Lett. Mater., 2023, 13(2) 104-108
BibTex   https://doi.org/10.22226/2410-3535-2023-2-104-108

Abstract

The LPSO phase in magnesium alloys raises their ignition temperature by ≈100°C in the as-cast state and by ≈200°C in the heat-treated stateMagnesium alloys are among the most advanced structural materials in aviation and mechanical engineering industry due to their low density and high strength-weight ratio, but their ability to ignite at temperatures from 500°C, while actively sustaining combustion, can cause disastrous consequences even in the event of minor emergencies. This paper is intended to investigate the compositions that can enhance flame resistance of magnesium alloys. Comparison was made between ignition temperatures of commercial cast alloy ML10, LPSO-structure alloy, advanced cast alloy with rare earth metals, and variations of these alloys with different additives — agents that improve flame resistance. It has been established that the maximum flame resistance is provided by those alloys that contain both the LPSO phase and the Yb or Ca additive as agents capable of raising the ignition temperature to 1000°C or even higher.

References (20)

1. N. V. Trofimov et al. Trudy VIAM: Elektron. Nauch.-Tekhn. Zh. 12 (48), 3 (2016). (in Russian) [Н. В. Трофимов и др. Труды ВИАМ. 12 (48), 3 (2016).]. Crossref
2. J. Pezda, A. Jarco. Archives of Foundry Engineering. 16 (4), 95 (2016). Crossref
3. R. M. Pillai, K. S. B. Kumar, B. C. Pai. Journal of Materials Processing Technology. 146 (3), 338 (2004). Crossref
4. Magnesium alloys. Part 2: Guide (ed. by M. B. Altman, M. E. Driza et al.). Moscow, Metallurgiya (1979) 277 p. (in Russian) [Магниевые сплавы. Часть II: Справочник (Под ред. М. Б. Альтман и др. Москва, Металлургия (1978) 277 с.].
5. Y. Kawamura, T. Marker. Flame-resistant magnesium alloys with high strength. The Seventh Triennial International Fire & Cabin Safety Research Conference. Philadelphia Marriott, Downtown (2013).
6. S. Inoue, M. Yamasaki, Y. Kawamura. Corrosion Science. 149, 133 (2019). Crossref
7. J. Kubásek et al. Journal of Alloys and Compounds. 877, 160089 (2021). Crossref
8. Y. Kawamura et al. Mater. Trans. 63, 118 (2022). Crossref
9. S. Inoue, K. Ishiage, Y. Kawamura. Journal of Alloys and Compounds. 934, 168014 (2023). Crossref
10. S. Inoue, M. Yamasaki, Y. Kawamura. Corros. Sci. 122, 118 (2017). Crossref
11. W. Wang et al. Materials Research Express. 6 (1), 016536 (2018). Crossref
12. S. Tekumalla, M. Gupta. Materials and Design. 113, 84 (2017). Crossref
13. W. Xuemin et al. Journal of Alloys and Compounds. 474 (1-2), 499 (2009). Crossref
14. L. L. Rohlin. Metal Science and Heat Treatment. 11, 18 (2006). (in Russian) [Л. Л. Рохлин. Металловедение и термическая обработка металлов. 11, 18 (2006).].
15. X. Zhang et al. Journal of Alloys and Compounds. 680, 212 (2016). Crossref
16. Z. Zhang et al. Materials & design. 88, 915 (2015). Crossref
17. S. Inoue, M. Yamasaki, Y. Kawamura. Corrosion Science. 174, 108858 (2020). Crossref
18. D. Han, J. Zhang, J. Huang et al. Journal of Magnesium and Alloys. 8, 329 (2020). Crossref
19. R. Kumar et al. Scripta Materialia. 49, 225 (2003). Crossref
20. N. Tahreen, D. L. Chen. Advanced Engineering Materials. 18 (12), 1983 (2016). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation - FEMR-2020-0003