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The density functional method was used for the simulation of discrete breathers in graphane (fully hydrogenated graphene) 
and strained graphene. It is demonstrated that breathers can exist with frequencies lying in the gap of the phonon spectrum 
of both systems. The gap in graphane is a consequence of high mass difference between carbon and hydrogen atoms, while 
in graphene the gap is induced by uniaxial tension of carbon layer in the “zigzag” direction (axes X). Breather core atoms 
in graphane are moving along Z direction which is perpendicular to the carbon sheet. In graphene discrete breathers are 
polarized in the “armchair” direction (axis Y). In both systems breathers are highly localized dynamical objects. The frequency 
on amplitude dependence found for breathers possess soft nonlinearity type. The results are of fundamental importance, as 
far as for discrete breathers in crystals molecular dynamics calculations based on empirical potentials should be revised by 
means of more reliable methods.
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1. Introduction

Localized dynamical objects in nonlinear discrete systems 
that have translational symmetry were first studied in 
the work of Ovchinnikov [1]. Dolgov examined the time-
periodic symmetric and antisymmetric localized solutions 
of nonlinear equations for the chain of Fermi–Pasta–Ulam 
of β type by means of Fourier series expansion [2]. The 
article of Sievers and Takeno [3] drew the attention of the 
scientific community to the study of objects, which later 
became known as discrete breathers (DB). By definition, 
they are oscillations in a homogeneous (without impurities 
and defects) Hamiltonian lattice, localized in space and 
periodic in time. Discrete breathers can be directly observed 
in mesoscopic systems, which resulted in their discovery in 
a number of such systems of different physical nature [4]. In 
particular, they were found in the chains of superconducting 
Josephson junctions [5], arrays of optical waveguides [6] and 
mechanical microcantilevers [7], in granular crystals [8], etc. 
On the other hand, experimental studies of discrete breathers 
in real crystals [9–14] face serious technical difficulties [15], 
whereby the methods of computer simulation become of 
special significance. Using these methods, it was possible to 
predict the possibility of the existence of discrete breathers in 
alkali halide crystals [16–18], metals Ni and Nb [19] and V, 
Fe, and W [20], semiconductors Si and Ge [21], an ordered 
Pt3Al alloy [22] and strained graphene [23–25].

In the vast majority of works, the mathematical simulation 
of discrete breathers is carried out using the methods of 
molecular dynamics, considering a crystal as a system of 
mass points; the interaction between the points is described 
by some phenomenological potentials (we will refer to it 
as MT models). The selection of appropriate interatomic 

interaction potentials is of crucial importance in this 
approach and especially for the study of discrete breathers. 
In the simulation of breathers in crystals of different types, 
various kinds of potentials were used. The complexity of them 
ranges from the simple pair potentials such as the Lennard–
Jones, Morse, and Born–Mayer to the highly sophisticated 
multi particle potentials like Brenner, Tersoff, AIREBO, and 
so on. The choice of the phenomenological potential in the 
study of the dynamics of specific crystal structures is often 
a difficult task. An example of a comparative analysis of the 
correctness of various empirical potentials is the work [26], 
which addresses the discrete breathers in covalent crystals of 
silicon and germanium.

Breather oscillations induce polarization of the outer 
electron shells of atoms, which is very difficult to fully capture 
in the frame of the model considering interaction between 
mass points. There exist several works where polarization of 
electron shells induced by breather oscillations is partly taken 
into account. As an example, we refer to the works [27, 28] 
where a simplified model was used to discuss the effect of 
polarization induced by DBs in the perovskite structure.

The above discussion suggests the importance of ab 
initio simulations of DBs in crystals. Such simulations in the 
present work are held by means of electron density functional 
method, which is implemented the ABINIT package [29–
31]. In fact calculations are made in the framework of the 
following approximations. The pseudopotentials (in the 
Troullier-Martins form) approach allows to distinguish 
valent and core electrons, the latter are considered as a part 
of the ion. The Born-Oppenheimer approximation takes into 
account the significant differences in the masses of the ions 
and electrons. The motion of heavy ions is described by the 
classical equations, while the motion of light valent electrons 
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is controlled by the quantum mechanics equations. The forces 
acting on the ions depend on the electronic subsystem state, 
which quickly adapts to the ions current positions. Kohn-
Sham equations [32, 33] are solved by ABINIT for each nuclei 
configuration. 

2. Discrete breathers in graphane 

The armchair confirmation of graphane is considered with H 
atoms attached at the opposite sides of the graphene sheet in 
a staggered manner, as shown in Fig. 1(b). Periodic boundary 
conditions are applied to exclude the effect of free edges. The 
calculated phonon density of states (DOS) for graphane is 
shown in Fig. 1(a). The center of the narrow optical band is 
at a frequency of about 83 THz, while the width of this band 
is about 2 THz. The gap in the phonon spectrum extends 
from ωL = 41.7 THz to ωH = 81.6 THz having the width of 
39.9 THz.

The paper [34] was the first one in which the simulation of 
discrete breathers in crystals have been made using ab initio 
calculations based on the density functional theory. Existence 
of a wide gap in the phonon spectrum of graphane opens the 
possibility to excite a gap DB. This was achieved by applying a 
displacement normal to the graphane plane (along the z axis) 
to the H atom labeled as H0 [see Fig. 1(b)]. All other atoms 
in the computational cell had zero initial displacements and 
zero initial velocities. Varying the initial displacement of 
the H0 atom, DBs with different vibration amplitudes were 
excited. The H0 atom vibrates with large amplitude while all 
other atoms have much smaller vibration amplitudes. 

The main result for DBs in graphane is the dependence of 
oscillations frequency ν on breather amplitude A presented 
in Fig. 2. It can be seen that the ν(A) curve bifurcates from 
the upper edge of the phonon gap and then decreases almost 
linearly with increase in A, entering the lower phonon band. 
The decrease in frequency with increase in amplitude reveals 
a soft-type anharmonicity of the DBs in graphane in the 
entire range of DB amplitudes.

3. Discrete breathers in graphene 

A number of works [23, 35, 36] were devoted to the study 
of the possible existence of discrete breathers in monolayer 
graphene at zero temperature (T = 0 K) in computer 
simulations. In all these studies, various MT model were 
used, and the dynamics was described by the conventional 
Newton equations. Breather-like dynamic objects were 
studied in [35] for unstrained graphene in the MT model 
with the Brenner potential [37], which were excited due to 
the displacement of the two nearest carbon atoms (located 
on the Y axis) at equal distances towards each other. At 
sufficiently large amplitudes of such displacement, a strong 
localization of energy in a small neighborhood of the initial 
excitation (breather core) took place; the amplitude of the 
oscillations of atoms decreased rapidly with distance from 
the core. The localized dynamic object thus obtained, 
lacking in strict periodicity in time, was not an exact discrete 
breathers. The time of its life was approximately 26 “periods”, 
as the fundamental frequency was located above the upper 
limit of the phonon spectrum.

It is known that to obtain a perfect discrete breather, 
a very precise selection of the initial displacement of all 
the atoms of its core along with all its peripheral atoms 
is required (see, for example, [4, 38, 39]). In the case of an 
insufficiently good selection of such an initial profile of the 
localized excitation, one can only expect the construction of 
a quasi-breather. This concept and a number of numerical 
characteristics of the “rate of quasi-breatherness” were 
introduced in [39]. Strict periodicity of a discrete breather 
assumes a full synchronization of vibrations of all the 
atoms in the lattice [40]. This synchronization for discrete 
breathers was implemented in strained graphene [36]. It was 
shown that despite the possibility to construct a perfect DB 
in graphene under various types and degrees of strain, all 

Fig. 1. (Color online) (a) Phonon density of states (DOS) of 
graphane. Green and blue curves correspond to the states associated 
respectively with carbon and hydrogen atoms. Black curve displays 
the entire DOS. (b) Structure of graphane. To excite a DB, the H0 
atom, was displaced along z axes and released with zero initial 
velocity. All other atoms had zero initial displacements and 
velocities.

Fig. 2. (Color online) Graphane DB frequency as the function 
of amplitude obtained from ab initio simulation (black circles). 
Horizontal dashed lines show the edges of gap in the phonon density 
of states. The inside plot shows the time evolution of C0 and H0 
(see Fig.  1) atoms displacements from correspondent equilibrium 
positions for the breather related to the red filled dot of ν(A) curve.
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obtained dynamical objects appear to be unstable.
A fundamentally different type of discrete breathers in 

strained graphene was studied in [23]. Under the uniaxial 
deformation along both the “armchair” direction and the 
“zigzag” direction, a gap opens in the phonon spectrum of 
graphene. In such a situation, the possibility of the existence 
of gap discrete breathers arises. The frequency of these 
dynamic objects is within the gap of the phonon spectrum, 
and a soft type of nonlinearity takes place; meaning that the 
frequency of a discrete breather decreases with increasing the 
amplitude.

In the present paper, we used ab initio calculations 
based on the density functional theory for the study of gap 
discrete breathers in a graphene monolayer stretched along 
the “zigzag” direction (the X axis, see Fig. 3). To excite the 
discrete breather in strained graphene, two adjacent carbon 
atoms (the core atoms of the discrete breather) are shifted 
from the equilibrium positions along the Y axis in the 
opposite directions by the distances equal in absolute value 
for both atoms, at the initial time. The remaining atoms are in 
equilibrium positions at this time, and the initial velocity of 
all the atoms of the lattice are zero.

The dependence of the frequency on amplitude ν(A) for 
the gap discrete breathers in strained graphene for the case 
of uniaxial 20% tension along the X axis (in the “zigzag” 
direction) is shown in Fig. 4. This figure shows that function 
ν(A) decreases monotonically with increasing amplitude, 
indicating a soft type of nonlinearity of the obtained discrete 
breathers. The lifetime of these highly localized dynamic 
objects (they are not exact breathers although) significantly 
depends on whether the relevant section of the curve of 
ν(A) is within the gap of the phonon spectrum, or it goes 
to the optical band. In the former case, the lifetime reaches 
hundreds of oscillation periods, and, in the latter case, it does 
not exceed two or three dozen periods, due to the constant 
loss of energy for the emission of phonons.

4. Conclusions

In this paper, gap discrete breathers are discussed in graphane 
and monolayer graphene sheet uniaxially strained along 
the X axis (the “zigzag” direction). Computer modelling is 
done using density functional method. DBs in graphane 
demonstrate the soft-type anharmonicity with frequency 
monotonously decreasing with increasing amplitude. Atomic 
vibrations in the constructed discrete breathers in graphene 
are polarized along the Y axis (the “armchair” direction). 
These breathers also show a soft type of nonlinearity, and the 
dependence of the frequency on amplitude ν(A) is located in 
the gap of the phonon spectrum. 

The investigated discrete breathers are highly localized 
dynamic objects: only two nearest atoms forming the core of 
the breather have vibrations of significant amplitude, and the 
surrounding atoms vibrate at much lower amplitudes.

For the graphene it is essential that the found gap breathers 
are polarized perpendicular to the axis of deformation of the 
graphene sheet. However, it should be noted that the gap in 
its phonon spectrum appears not only upon deformation 
along the “zigzag” direction (the X axis) but also along the 
“armchair” direction (the Y axis). We have not found any 

discrete breathers in this gap. Moreover, in the framework of 
ab initio calculations, we found no breathers with a hard type 
of nonlinearity (the breathers of this type have been found 
in [36]).

It should be noted that the ab initio calculations are still 
extremely rare in the studies of the properties of discrete 
breathers in real crystals and should be expanded, since the 
results obtained by the methods of molecular dynamics, are 
dependent, and sometimes significantly, from the use of 
empirical interatomic potentials.
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Fig. 3. (Color online) (a) Phonon density of states (DOS) of graphene 
under the uniaxial 20% stretching along the X. Red, green and gray 
curves correspond to the normal modes along X, Y and Z axes 
respectively. (b) Structure of graphene. To excite a DB, two carbon 
atoms (colored in red), was displaced along Y axes and released with 
zero initial velocity. All other atoms had zero initial displacements 
and velocities.

Fig. 4. (Color online) Graphene DB frequency as the function 
of amplitude obtained from ab initio simulation (black circles). 
Horizontal dashed lines show the optic band while horizontal solid 
line displays the border of acoustic band of the phonon density of 
states. The inside plot shows the displacement on time dependency 
for two DB core carbon atoms (in red) and for two neighbor atoms 
(in green) for the breather related to the red filled dot of ν(A) curve.
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