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The dynamic theory of martensitic transformation explains the phenomenon of initiation of the fine structure of transformation 
twins as a result of the coordinated action of relatively long-wave displacements (ℓ-waves) with more short-wave displacements 
(s-waves). Being a part of a controlling wave process, ℓ-waves provide habit formation, whereas s-waves play the leading part 
in initiation of the main component of twin structure (TS). It was shown that the dynamic theory allows one to consider the 
degenerate TS (DTS) formation as a particular case of TS when the twin component volume is converted to zero. In this work 
the case of DTS is discussed by the example of crystals with habits {110}. The peculiarity of this variant consists in the fact that 
in order to describe the morphology of transformation it is enough to only consider longitudinal waves running along axes 
<100> as a part of the controlling wave process. In particular, habit (101) may be matched with a pair of ℓ-waves with velocities 
along [100] and [001] and a pair of s-waves with velocities along [100] and [010]. At the same time, condition ds = λs  / 4, where 
λs is the wavelength of s-waves, and ds is a transversal (in directions [100] and [010]) size of the initial exited (oscillatory)  
s- ℓ- cell with longitudinal size ds << dℓ < λℓ  / 2, conforms to DTS formation. For martensite transformations fcc-bct, bcc-fct, fcc-
fct, the transition to finishing deformations and the connection of the values of tetragonality of martensite and volume effect 
with one of characteristic main values of deformation tensor are discussed.
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1. Introduction

The formation of martensite crystals possessing a fine 
inner twin structure (TS) is rather typical of martensite 
transformations (MT): from pronounced transitions of 
the first type (i.e., in disordered iron-based alloys [1 – 4]) 
to thermo-elastic transitions (i.e., in alloys based on 
titanium nickelide and many non-ferrous alloys [5 – 8]). 
Transformation twins, as a rule, represent a combination 
of interchanging areas with an orthogonal (at the initial 
phase) orientation of main axes of deformations. The 
crystal geometry analysis [9 – 11] attributes twinning to 
non-homogeneous deformation necessary to maintain the 
macroscopic invariance of the habit plane. The prescribed 
habit orientation is provided by the strictly defined ratio β of 
the main and twin components of TS.

However, experiments [12] have shown that β magnitude 
can vary within the limits of one crystal, and in [13 – 14] 
non-twinned thin-plated crystals or streaks of lens-shaped 
crystals were observed.

In the dynamic theory of MT [15 – 18], the habit formation 
is determined by the action of relatively long-wave shifts 
(ℓ-waves), and the formation of TS takes place considering 
relatively short-wave shifts (s-waves) in the controlling wave 
process (CWP). Thus, a habit orientation does not depend on 
β magnitude. The model of formation of a regular TS [17 – 18] 
with coordinated action of s- and ℓ-waves is taken as a basic 
one. Origination of waves (in the form of a wave bundle) is 

provided by initial excited (oscillatory) states (IES). It should 
be taken into account that ℓ-waves originate in the form of 
elongated rectangular parallelepipeds in the areas designated 
by the elastic fields of dislocation centers of initiation, and 
s-waves are generated by spontaneously initiating excited 
cells at the optimal (for MT realization) ratio of ℓ- and  
s- oscillation phases.

The main component of TS is physically isolated, namely 
it is initiated mainly by s-waves action, whereas the twin 
component appears as an interlayer between the nearest main 
components (due to the coherent link of contacting areas of 
the lattice), i.e. the process of its formation has a subordinate 
character. Wave vectors of longitudinal s-waves are directed 
along the orthogonal axis of symmetry of the 4-th order 
<100> of the initial phase. In the area of superposition of 
s-waves front, the plane deformation of the expansion-
contraction type is initiated. In a pair of quasi-longitudinal 
ℓ-waves, the first wave provides Bain expansion along the 
third axis from <100> family, common for both components 
of TS. The second ℓ-wave initiates contraction deformation, 
simultaneously marking out one of the axes <100> as main 
contraction axis of basic component of TS, which forms 
the minimal angle with direction n2ℓ of its wave vector. 
The induced reproduction of the excited s-cell (initially 
originated spontaneously) in the course of CWP propagation 
suggests that s-cell nearest to the initial one appears after 
passing the two legs of a triangle in directions [1–10] and [110] 
by superposition of s-waves within the same time period, 
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and the hypotenuse of the triangle at the speed equal to  
v2ℓ'-projection to the plane (001) at the velocity of ℓ-wave v2ℓ, 
bearing compression deformation (Fig. 1).
Suppose that two legs of this triangle are passed at Z speed 

2 vs∆, we get the condition:

vs∆ = v2ℓ' cos ψ, (1)

where ψ is an acute angle between v2ℓ' and vs∆ || <001>γ . In 
terms of a harmonic description of a threshold deformation, 
it is considered (as is seen from Fig. 1) that the loss of stability 
of the lattice of the initial phase corresponding to the main 
component of TS takes place in the area of transversal size

ds < λs / 2,   d̃s = ds  / λs < 1 / 2. (2)

Then it is evident that, for the proportion of TS components, 
the equality holds:

βtw = ̃ds  / (1 + tg ψ − 4 ̃ds ). (3)

The model of regular TS formation serves as a base for passing 
to the description of real distributions of transformation 
twins, as a rule, possessing fragmentation, and each fragment 
being related to its own spontaneously initiated active cell 
[19 – 21].

However, this work studies an extreme case of the 
degenerate twin structure (DTS) following on from the 
resultsof the dynamic theory for regular TS. It should be noted 
that from the standpoint of minimizing the elastic energy, the 
transition from a twin to a monodomain structure was briefly 
discussed in [22].

2. The dynamic theory of formation of martensite  
crystals with degenerate twin structure

According to (3), the case of DTS corresponds to the 
condition:

1 + tg ψ − 4 ̃ds = 0. (4)

Next we suppose that the wave process transfers the 
threshold deformation initiating fcc-bcc (bct) martensite 
transformation with Bain type of deformation. Then a simple 
variant of CWP model includes a pair of ℓ-waves; one of 
them propagates along [001], bears expansion deformation, 
and is purely longitudinal, while the other quasi-longitudinal 
wave bears compression deformation and has a wave vector 
in plane (110) making angle ψ with [100]. A pair of s-waves 
is similar to those shown in Fig.  1, they propagate along 
orthogonal directions of ∆-axes of symmetry of the fourth 
order and bear deformation of the «expansion-compression» 
type coordinated with ℓ-waves. From (1) we can find for two 
extreme ψ values:

Ψ = 0 →  ̃ds = 1 / 4,   Ψ = π / 4 →  ̃ds = 1 / 2. (5)

The comparison with (5) shows that realization of the 
case of the second wave propagation strictly along the 
direction of Σ-axis of symmetry of the second order (Ψ = π / 4) 
would mean conversion of the contribution to threshold 
compression deformation from ℓ-wave at boundary habit 
planes to zero. However, even for small deviations of Ψ from 
π / 4 the inequality (2) is met. Besides, coordination of the 
velocities of s- и ℓ-waves propagation (1) requires the equality 

(6) to be met with Ψ = π / 4:

vℓΣ  / vsΔ = æℓs = 2 . (6)

Note that if vℓΣ , vsΔ are interpreted as group velocities of 
s-  and ℓ-waves from different diapasons of wave vectors, 
the condition (6) can always be met since vsΔ monotonously 
decreases to zero at the boundary of Brilluen zone (from 
maximum values in the area where dispersion can be 
ignored).

On the contrary, in the extreme case of Ψ = 0 the inequality 
(4) is met. Correlation (1) takes the form:

vℓΔ  / vsΔ = æℓs = 1. (7)

Obviously, condition (7) is easily met in the area of wave 
vectors, where it is possible (with satisfactory accuracy) to 
ignore the difference of velocities due to the dispersion (to 
wave vectors q ~ 0.1 qmax = 0.2 π / a, where a is the parameter of 
the lattice of the initial phase).

Recall that normal N to habit plane in the dynamic theory 
of martensite transformation comes to linear combination of 
the pair of ℓ-waves velocities:

N1,2ℓ || n2ℓ ± æℓℓ n1ℓ ,  æℓℓ = 2

1

v
v




,
 

(8)
|n1,2ℓ| = 1,   n1ℓ = 1
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Then, in case of Ψ = 0 we have:

æℓℓ = 1,   n1ℓ = [001],   n2ℓ = [100],   N1,2ℓ || [101], [10–1]. (9)

If Ψ = π / 4 and æℓℓ = 2 , then

n1ℓ = [001],   n2ℓ = 1
2

[110],   N1,2ℓ || [112], [–1–12]. (10)

Note that «hidden» orientations of normals

N1,2s || [110], [1–10] (11)

to planes of twinning can be trivially found from (8) if we 
change:

æℓℓ → æss = 1,   n1ℓ → n1s = [010],   n2ℓ → n2s = [100]. (12)

Fig. 1. The dynamic model of formation of a regular layer (in 
particular, a twin one) structure with the 2 : 1 proportion of TS 
components [18].
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Strictly speaking, the removal of degeneracy by 
orientations of twinning planes suggests realization of 
transfer by values ψ: either ψ ≤ π / 4 or ψ ≥ π / 4.

Then we confine ourselves to the extreme case of crystals 
with DTS and habits (110) allowing us to establish a simple 
relation between tetragonality of t-martensite and one of the 
main values of the tensor of Bain deformation.

2.1. Tetragonality of martensite with habits (110)γ 
at fcc-bct transformation

We suppose that fcc-bct (γ-α) martensite transformation 
(MT) is realized and crystals with DTS and habits (110) γ 
originate. Recall that in the dynamic theory of MT, the 
cinematic description of a habit in the threshold mode 
complies with the deformation description. The requirement 
of coincidence of these descriptions means that the 
proportion of compression modulus ε2 < 0 and tension 
modulus ε1 > 0 in the threshold mode coincides with the 
ratio of squares of wave velocities:

1

2| |
ε
ε

 = æ2
ℓℓ . (13)

Then it is not unreasonable to assume that austenite lattice 
having lost its stability and relaxing to new stable positions of 
atoms keeps the ratio of deformations in the diapason from 
the threshold to the final values. We also suppose that the 
first quick stage of transformation is linked to short-wave 
s-deformations (within time interval Ts / 2 of the order of the 
period of s-oscillations), and at this stage the finish (Bain ε1B) 
expansion deformation in [010]γ direction ε1s = ε1B > 0 is 
achieved. Since, the compression deformation along [100]γ at 
the first stage amounts to value ε2s = −ε1s = −ε1B. Since at the 
second stage (within time interval Tℓ / 2 of the order of the 
period of ℓ-oscillations) compression and expansion are also 
carried out by waves with the same velocities, the deformation 
contribution is ε2ℓ = −ε1ℓ . It follows from the symmetry of 
bct lattice that expansion deformation ε1ℓ along [001] axis 
is equal to deformation ε1s = ε1B. Consequently, ε2ℓ = −ε1B, i.e. 
at the second stage the contribution of ℓ-wave in the main 
Bain compression deformation is equal to the contribution 
of s-wave at the first stage. Let’s take into consideration that 
due to inequality Tℓ >> Ts , ℓ-compression affects the already 
collapsed lattice. As a result, linear dimension а (a parameter 
of lattice fcc of austenite) in direction [100]γ decreases by 
(1 − ε1B)2 times, while lateral dimension a / 2  increases 
by (1 + ε1B) times. It is evident that to determine t the ratio 
between the edge of the cube of the initial elementary cell of 
fcc lattice after compression deformation and the half of the 
diagonal of the cube face after expansion deformation should 
be used.

Therefore, the value of tetragonality is preset by 
expression:

tγ-α = (1 − ε1B)2 / [(1 + ε1B) 2 ] (14)

According to (14), the value ε*
1B ≈ 0.11290293 ≈ 0.1129 

meets the condition of the absence of tetragonality (tγ-α = 1),  
tγ-α > 1 at ε1B < ε*

1B and tγ-α < 1 at ε1B > ε*
1B. Note that the 

value of lattice tetragonality when analyzing martensite 
transformation is a convenient parameter normally reflecting 

the existence of certain regulations both in implantation 
alloys (i.e., carbon spreading about octahedral interstices in 
steels [23]), and in substitution alloys (i.e., normalization 
of atoms in alloys of stoichiometric composition, magnetic 
normalization [24]).

2.2. The tetragonality of martensite with habits 
(110)α at bcc-fct transformation

We suppose that bcc-fct (α-γ) martensite transformation is 
realized and crystals with DTS and habits (110)α originate.
The main axis of extension is oriented along the direction 
[010]α || [001]γ (the edge of bcc cell), and the main axes of 
compression are directed along the diagonals of bcc cell 
faces.

We suppose that the ultimate (Bain) compression 
deformation ε2B is achieved at once, at the first short-
wave stage. Then, making an examination similar to the 
onementioned above, after ℓ-compression we have:

tα-γ = (1 + |ε2B|)2 / [(1 − |ε2B|) 2 ] (14)

instead of formula (14).
According to (15), the absence of tetragonality (tα-γ = 1) 

is fulfilled by the value |ε*
2B| ≈ 0.117291 ≈ 0.1173, tα-γ < 1 at 

|ε2B| < |ε*
2B| and tα-γ > 1 at |ε2B| > |ε*

2B|. For instance, according 
to [24], tetragonality tα-γ ≈ 0.98 is observed in crystals of 
martensite of alloy Cu – 38.55 mas. % Zn with habits {2 11 12} α 
close to {110}α , which is possible (in concordance with (15)) 
at ε2B ≈ 0.11.

2.3. The tetragonality of martensite with habits 
(110)α under fcc-fct transformations

Transformations fcc-fct are observed in alloys under thermo-
elastic martensite transformations. Depending on the 
material, deformation values can vary within a rather wide 
range. Therefore, in alloys Fe-Pt with compositions close 
to stoichiometric Fe3Pt, transformation features depend 
on the degree of normalization and are characterized by 
the decrease of deformation values, temperature hysteresis, 
specific volume change during normalization progress. In 
alloys In-Tl, a transformation exists as a transition of the I-st 
kind close to a transition of the II-nd kind [1, 25], as a rule, 
the crystals are twinned, and their habits belong to the family 
{110}α .

The edges of a fcc cell are naturally chosen as the main 
axes of deformation. If the extension deformation dominates, 
then t > 1, the predominance of compression leads to t < 1, 
t = 1 only in the absence of deformation:

t = (1 + ε1)
2 / (1 − ε1) → t > 1,

(16)
t = (1 − |ε2|)

2 / (1 + |ε2|) → t < 1.

In record (16), as well as in (14) and (15), habit (110) and 
degenerate twin structure are considered.

3. Discussion

In the above stated diagrams of formation of crystals with 
habit (101) and DTS of the corresponding wave bearer of 
three-dimensional Bain deformation were used. However, 
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options with a wave bearer of two-axes (plane) deformation 
leading to a fastest transformation of the plane in which the 
main deformation axes lie should also be discussed. At the 
same time it is supposed that in the direction orthogonal 
to isolated plane, homogeneous deformation recovering 
the symmetry of lattice takes place due to the electron 
correlations.

3.1. The tetragonality of martensite in the case of 
wave bearer of plane deformation

In the case of fcc-fct, martensite transformation with 
habit (101)γ planes (010)γ are deformed and homogeneous 
extension along [010]γ is supposed. Such mechanism does 
not require two stages of transformation. Therefore, under 
equal-in-size deformations of extension and compression 
for tetragonality instead (14) we have correlation:

t̃γ-α = 2 (1 − ε1B) / (1 + ε1B),
(17)

ε*
1B = ( 2  − 1) / ( 2  + 1) ≈ 0.1716,

ε1B < ε*
1B → ̃tγ-α > 1,

ε1B > ε*
1B → ̃tγ-α < 1, (18)

ε1B = ε*
1B → ̃tγ-α = 1.

Similarly, for the case of bcc-fct transformation instead of 
(15) we find expression for t reciprocal to ratio (17):

t̃α-γ = (1 + |ε2B|) / [(1 − |ε2B|) 2 ],
(19)

|ε*
2B| = ( 2  − 1) / ( 2  + 1) ≈ 0.1716,

|ε2B| < |ε*
2B| → ̃tα-γ > 1,

|ε2B| > |ε*
2B| → ̃tα-γ < 1, (20)

|ε2B| = |ε*
2B| → ̃tα-γ = 1.

Obviously, the variant of plane deformation under fcc-
fct transformation corresponds to the removal of squares 
relationship in numerators of formulas (16):

t̃ = (1 + ε1) / (1 − ε1) → ̃t > 1,
(21)

t̃ = (1 − |ε2|) / (1 + |ε2|) → ̃t < 1.

According to (21), t̃ > 1 if expansion deformation dominates; 
t̃ < 1 if compression dominates, and t̃ = 1 only if there is no 
deformation.

It should also be noted that high symmetry of habits of 
{110} family, as well as the attribution of typical orientations 
of the bounds of transformation twins (in the case of crystals 
with DTS) to this family may result in pairs of crystals 
with the same habits, but with orthogonal orientations of 
dominant deformations. It means that crystals will have 
twin orientations with incongruous inner planes of twinning 
(though hidden).

Evedently, according to (5) the realization of requirement 
d̃s = 1 / 4 as a regular condition (for crystals with DTS and 
habits (110)) is very rigid. Nevertheless, such variants can be 
realized.

Making precise comparison of the calculated and 
experimentally observed values of martensite tetragonality 
one needs to also consider that main axes of s-deformation 
undergo rotation losing their initial orthogonality. Therefore, 
s- and ℓ-deformations have to be calculated using the formulas 
for plane deformation. This issue is discussed in detail in [15], 

and we use the simplified variant of formulas for tetragonality 
to reveal their principal simplicity and obviousness. Indeed, 
the relation between ratios of deformations and wave velocities 
(13) permits the association of “t” magnitude with one of the 
main values of Bain deformation that can be easily used as a 
phenomenological parameter when processing experimental 
data. Its magnitude can be found using the measurement data 
of the parameters of lattices of the initial and ultimate phases. 
The value of that parameter can be found from the condition 
of the minimum thermodynamic potential (corresponding 
to the experimental conditions), the main part played by 
the contribution of zone energy of electrons (in the case of 
martensite transformation in metals and alloys).

At the same time, there is a sufficient difference of “t” 
magnitudes in cases of wave bearers of three-dimensional 
and plane deformations. Reliable separation of the pointed 
variants by “t” magnitude even disregarding the measurement 
of orientations of axes after the first stage of s-deformation is 
also allowed.

3.2. A relative change of volume δ

Alhough more attention was paid to the orientations of habits 
and martensite tetragonality, the dynamic theory permit 
the establishment of a representative list of morphological 
features including orientation ratios, macroshift, relative 
change of volume δ.

In particular, at γ-α MT in the same approximation as for 
(14), we easily find:

δγ-α = (1 − ε2
1B)2 −1 = −ε2

1B (2 − ε2
1B) ≈ −2ε2

1B < 0. (22)

This means that for real values ε1B ~ 0.1 the volume effect 
is anomalous in sign (usually for γ-α MT δ > 0), but with a 
typical value (near 0.02). It is evident that origination of such 
crystals as a kind of relaxation «layers» between crystals with 
positive values of δ is quite admissible.

A similar result is obtained at α-γ MT, but in formula (22) 
change ε1B → |ε2B| has to be made.

δα-γ = (1 − ε2
2B)2 −1 = −ε2

2B (2 − ε2
2B) ≈ −2ε2

2B < 0. (23)

It is obvious that for fcc-fct transformation δ is calculated 
using formula (22) if t > 1, and formula (23) if t < 1.

Since in the extreme case of DTS under consideration 
the volume effects δγ-α , δα-γ and δ are negative, the preferable 
option for its realization is connected with the direct MT 
occurring under cooling. Note that for the studied option 
of habits {110} (in the bases of initial phases) the negative 
volume effect is a necessary (but insufficient) indicator of the 
mechanism of transformation with DTS.

According to the results of preliminary estimations, MT 
B2 → L10 observed under cooling of alloy Ni50Mn50 within the 
temperature interval of Ms = 980 K and Mf  = 920 K [26] can be 
attributed to such an extreme case. Without a detailed analysis 
it can be noted that for such MT the features expected for 
crystals with DTS are attained. Those are: packets of crystals 
twinned in couples (with the same habits {110}α); δα-γ < 0,  
|δα-γ| ~ 0.01; magnitude of t ≈ 0.9 in Ms surroundings are 
typical of and in accord with value δα-γ . The observed system 
of fine secondary nanotwins does not preclude the description 
of such martensite as crystals with a degenerate «primary» 
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structure of transformation twins.
Let’s note that the variant with a wave bearer of plane 

deformation satisfies the abnormally high (at ε1B ~ |ε2B| ~ 0.1) 
values of relative volume changes:

δ̃γ-α = ε1B (1 − ε1B − ε2
1B) ≈ ε1B > 0, (25)

δ̃α-γ = −|ε2B| (1 + |ε2B| − |ε2B|2) ≈ −|ε2B| < 0. (26)
In (25) and (26) nomination δ̃, as formerly t̃, was introduced 
to distinguish the volume effect in the case of a wave bearer 
of plane deformation.

Using correlations (19) and (26) it evident that the 
abovementioned variant of transformation in Ni50Mn50 [26] is 
not connected with the bearer of plane deformation. Indeed, 
inserting value t̃α-γ = 0.9 in (19), we obtain deformation 
|ε2B| ≈ 0.12, at which, according to (26), ̃δα-γ ≈ −0.12 sufficiently 
exceeds the value observed.

Unless comparatively high values of δ̃, the origination of 
such crystals in the composition of accommodated crystal 
ensembles does not contradict any condition. Especially in 
the case of transformations in austenite grains with diameters 
of submicroscopic and nano-diapasons when small sizes of 
crystals permit to avoid large deviations from the coherent 
conjugation of lattices of various phases.

3.3. Additional remarks

The discussed variant of transformation with DTS as 
additional to the commonly accepted variant of shift 
reconstruction associated with the softest transverse mode. 
A combined scenario when at the first stage longitudinal 
waves quickly form the fine inner central part of the crystal 
initiating the shift, which develops and causes a preferably 
thermo-elastic widening of crystals in the process of cooling, 
is quite possible.

Nano-twins inside crystals twinned in couples are 
conditionally attributed to «secondary» ones, i.e. not realized 
as «primary» transformation twins. Nevertheless, their 
appearance as transformation twins (inside the «primary» 
main components of DTS closing down) is possible due to 
the disturbance of the ratio for velocities (1). Really, due to 
the dispersion of phonon velocities the inequality vsΔ < vℓΔ is 
held, causing the initiation of irregular TS [19]. In connection 
with the possibility mentioned it would be more correct to 
use the submission of degenerate primary twin structure 
(DPTS) for such crystals.

In the general case, within the limits of one sample, 
different dynamic variants of transformation can be realized. 
For instance, symbiosis of crystals with habits {557} and {225} 
in steels is well known [23]. There are visible morphological 
variations for crystals with habits {334} and {443} in titanium 
as well [1]. Beside the above mentioned mechanisms, there 
is a variant of the fastest transformation of planes with their 
further reshuffle [27, 28]. Such variability may be caused 
by local variations of chemical composition, appearance of 
additional variants of dislocation nucleation center (DNC) 
in the process of martensite crystals formation, short-wave 
fluctuations in CWP structure. The analysis of the variety of 
the observed morphological features to a substantial degree 
permits the reconstruction of the dynamic mechanism of MT. 
At the same time, the more complete the analyzed variety is, 

the more detailed the reconstruction of the dynamics of the 
process appears to be. One of the most remarkable examples 
is the modulation of TS including the data on the extreme 
variant of DTS.

As to the perspectives of the further research, it is advisable, 
first of all, to analyze the mechanism of formation of crystals 
with habits close to {hhℓ}γ as variants of transformation 
with DTS. In particular, the above mentioned case of planes  
{11 2 }γ correlating to habits {557}γ of the packet martensite 
at γ-α MT in ferrous alloys is of interest. Note that relations 
(3) and (4) also permit thestudy of crystals with habits {hkℓ}γ 
as variants with DTS. There, material parameters æℓℓ и æℓs will 
obviously play a sufficient part.

4. Conclusion

The variant of realization of martensite transformation with 
the degenerate structure of transformation twins presented 
in the work is an extreme case of the dynamic formation 
of twinned martensite crystals. At the same time, there 
is a possibility of wave description of three-dimension 
deformation of Bain type.

The description of crystals with DTS with habits {110} 
looks most simply. The analysis carried out permits to 
attribute to this type, crystals of L10-martensite originating 
when well-ordered NiMn alloy of equi-atomic composition 
is cooled.

Generalization and distribution of the methodology 
studied concerning the case of crystals with habits of general 
type advances the facilities for reconstruction of peculiarities 
of the controlling wave process basing of the information 
about the collection of morphological features observed.
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