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A considerable growth of attention to the investigation of nonlinear, spatially localized vibrational modes called discrete 
breathers (DB) in defect free lattices is observed in many areas of modern physics. The existence of DB in crystal lattices is 
provided by the anharmonicity of the interatomic forces, leading to a dependence of vibration frequencies of atoms on their 
amplitudes. It has been shown that various crystals can support DB having different properties. The study of DB and their 
effect on crystal properties is a subject for numerous investigations. An important problem is to find the initial conditions 
to excite a DB. Crystals with Morse interaction potential are convenient objects for investigation of different DB types due 
to their simplicity. In the present study we focus on the analysis of the two-dimensional monoatomic crystal with Morse 
interaction potential and reveal the possibility of existence of immobile high symmetry DB in addition to the described earlier 
moving DB localized in a close-packed atomic row. For excitation of both types of DB similar approach is used, which is the 
application of a bell-shaped functions on a short-wavelength phonon mode in the nonlinear regime. Amplitude - frequency 
dependencies of DB central atoms is calculated for both types of DB. In both cases DB frequency lies above the phonon 
spectrum and increases with the amplitude.
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1. Introduction

Discrete breathers (DB)  — is spatially localized large-
amplitude vibrational mode in a defect-free nonlinear 
lattice [1 – 3]. Over the past ten years investigation of DB 
in different materials has been the subject of numerous 
works, including theoretical and experimental ones [4 – 11], 
performed by means of molecular dynamics [15 – 45] an ab 
initio approaches [12 – 14].

The possibility of DB existence is provided by 
anharmonicity of the interatomic forces, leading to a variation 
of atoms oscillation frequency upon amplitude. DB has the 
oscillation frequency out of the phonon spectrum. For this 
reason they do not resonate with phonons, do not excite them 
and not lose energy over time [2,3]. DB can be characterized 
by two types of nonlinearity. In case of soft nonlinearity type 
frequency decreases with increasing amplitude, hard type of 
nonlinearity is characterized by growth of frequency with 
increasing DB amplitude.

Decreasing of DB mode frequency in case of soft 
nonlinearity type with growth of amplitude values can 
result in reaching the gap of phonon spectrum in case of its 
existence. 

In a theoretical paper [38] it was shown that a one-
dimensional chain of atoms, interacting through one of the 
classical potentials (Born- Mayer, Lennard-Jones or Morse) is 
not able to support a DB with the hard type of nonlinearity. 
The authors were able to excite only the soft nonlinearity 
type DB considering a biatomic chain of atoms with a gap in 

the phonon spectrum. It was shown later in [39 – 46] that in 
two-dimensional and three-dimensional Morse crystals hard 
type of nonlinearity are able to exist as well. One can explain 
this possibility by the role of on-site potential presenting in 
crystals with higher dimensionality. The on-site potential 
suppresesses the effect of the increase of average interatomic 
distances in the DB localization center thus increasing the 
contribution of the hard core of interatomic potential by 
comparison to its soft tail.

The possibility of excitation of a moving DB in a closely 
packed raw of 2D Morse crystal was shown in [40].

One should mention that the configuration of the DB and 
its symmetry type depend on such factors as crystal lattice 
type and its dimensionality, interatomic bonds nature and 
mechanisms of DB initiation. However, not much works 
presenting some systematic description of possible types of 
DB able to exist in one crystal type can be found in literature. 
This work presents results of studying of DB of different 
symmetry type structure and localization degree which can 
be initiated in 2D Morse crystal by means of application of 
bell-shaped window to different phonon modes.

2. Simulation details

This work presents the results of comparison of two DB 
excited in 2D monoatomic Morse crystal. Both breathers 
have been initiated by means of excitation of phonon mode 
with a wave vector on the border of Brillouin zone in the 
non-linear regime. In case if the phonon mode frequency 
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grows with amplitude increase one can generate a spatially 
localized vibrational mode (namely the DB) by means of 
application of bell shaped function [49].

Both cases were analysed for the case of 2D crystal where 
those atoms are placed in the nodes of triangular lattice 
[49]. Interatomic interactions are defined by the long-range 
pairwise Morse potential.

2 ( ) ( )( ) ( 2 )m mr r r rV r D e eα α− − − −= − , (1)
where r is the distance between couple of atoms, D, α, rm –
parameters defining the potential. The functionV (r) has the 
minimum at r = rm, corresponding to the minimum depth 
value (bond breaking energy) D, α is the parameter defining 
the bond stiffness.

Without loss of generality one can put rm = 1 and D = 1, 
selecting the appropriate unit of distance and energy. For the 
parameter α determining the rigidity of the interatomic bond 
the value α = 5 was considered. For the selected cut-off distance 
5.5a, the equilibrium lattice parameter makes a = 0.98813. 
Morse potential has been frequently used for simulation of 
different DB properties in crystals [23 – 29,40 – 46].

This crystal can support excited phonon modes with the 
wave vector on the Brillouin zone q = (π, π), shown on Figures 
1 (a) and 1 (c). A computational cell containing 8×8 atoms 
and periodic boundary conditions was used for investigation 
of dynamics of mentioned modes.

Fig. 2 (a) shows the first mode frequency (Fig. 1 (a)) of 
the amplitude of atomic vibrations for cases when the size 
of the calculation cell was fixed (solid line) and when it 

was modified in order to maintain a zero external pressure 
(dashed line).

Correspondingly  Fig. 2 (b) shows the dependence 
of the frequency of the second mode (Fig. 1 (c)) of the 
atomic oscillations amplitude for cases of fixed and variable 
computational cell size. The horizontal dashed line stands for 
the upper limit of the crystal phonon spectrum, ωmax = 2.995. 
It can be seen that in case of constant volume both phonon 
modes in the nonlinear regime are characterized by frequency 
growth with amplitude followed by cleavage from the phonon 
spectrum upper limit. However in the zero external pressure 
case the mode frequency decreases with growing amplitude. 
One can thus conclude that DB can exist only in absence of 
breather induced local crystal “thermal expansion” and in 
case if their frequency will stay above the phonon spectrum.

Exponentially localized bell-shaped function having 
radial symmetry was applied for excision of high symmetry 
DB from flat phonon mode. The non-symmetrical DB has 
been obtained by means of superposition of two functions 
having different localization degree one solely in x and 
second only in y directions. The calculation was performed 
for a calculation cell containing 192×192 atoms for highly 
symmetrical DB and 80×80 for non-symmetrical DB with 
periodic boundary conditions for both cases.

The viscosity terms have been applied to the periphery 
of computational cells used for the absorption of small-
amplitude waves emitted by the DB due to the initial 
conditions inaccuracy. Center of the bell function for highly 

Fig. 1. (Color online) (a) stroboscopic pattern of atomic motion of a  the phonon mode of a high symmetry DB with a  wave vector q = (π, π) 
on the border of  Brillouin zone (b) stroboscopic pattern of atomic motion of a  the phonon mode of a unsymmetrical DB (c) stroboscopic 
pattern of atomic movements in the  vicinity of high symmetry DB that was initiated by means of superposition of bell-shaped function with 
the short wave phonon mode in the nonlinear regime. (d) stroboscopic pattern of atomic motions in the  vicinity of unsymmetrical DB that 
was initiated by means of superposition of bell-shaped function with the short wave phonon mode in the nonlinear regime. Atomic shifts 
are increased by seven times.
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symmetrical DB can be placed on one of the rest atoms or in 
a three neighboring vibrating atoms equidistant point. Both 
cases result in initiation of the third order symmetry DB. 
In the case of non-symmetrical DB the bell function center 
should only be arranged at a point between two atoms in 
a row. Because of the relatively low DB localization degree 
obtained in this study, it was revealed that the DB properties 
are very weakly dependent on its alignment.

3. Results and discussion

Fig. 2 shows the example of atomic displacements along 
x axis for both types of breathers. It should be mentioned 
that the considered DB is not an exact solution of nonlinear 
equations of motion of atoms and should be regarded in the 
concept of quasibreathers [48], having a sufficiently long 
lifetime.

Dependence of DB frequency on the amplitude is 
presented on Fig. 3 by empty circles connected with a solid 
curve. Growth of DB frequency with increasing its amplitude 
is a witness of hard nonlinearity type.

However, the DB frequency growth rate with amplitude-
increase is much smaller than that of corresponding phonon 
mode. This fact can be explained by increase of average 
interatomic distances in the DB core that results in growth 
of contribution of the soft tail Morse potential to system 
dynamics by comparison to that of the phonon mode in 

constant volume conditions.
Nonsymmetrical DB is defined by two bell-shaped 

function applied along y axis and along the x axis, which 
establishes its second order of symmetry, allowing DB to 
move along the closely packed atomic raw. In contrast to 
described case the high symmetry DB has lower localization 
degree and higher symmetry order that could be a probable 
reason of its immobility.

Unlike unbalanced DB [49], the breather considered has a 
high symmetry and a lower containment whereby, apparently 
cannot move through the crystal.

Investigations of both DB properties revealed their time 
stability within the calculations period (106 oscillations) 
and retaining its initially given form with some negligible 
amplitude variations. Energy values of both DB possess the 
same order of magnitude.

4. Conclusions

We have studied two types of DB of different symmetry in 
two-dimensional monoatomic crystal with Morse interaction 
potential. Both DB were initiated by the excitation of short-
wave phonon modes with following application of bell-
shape function. It was found that both types of DB are 
characterized by hard type of non-linearity and demonstrate 
the stability of properties over time. Amplitudes interval of 
DB existence in the case of high-symmetry DB about 2 times 
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Fig. 2. Displacement along x direction for one central atom of the DB as the function of simulation time for the case of (a) High symmetry 
DB shown on  Fig. 1 (a) and (b) nonsymmetrical DB presented on Fig. 1 (c).

Fig. 3. (a) The amplitude- frequency dependence of the phonon mode shown in Fig. 1 (a) in the nonlinear regime: solid line corresponds 
to calculations at constant volume, the dashed one goes for  zero pressure case. (b) amplitude- frequency dependence of the phonon mode 
shown in Fig. 1  (c) of the amplitude in the nonlinear regime: solid line corresponds to calculations at constant volume, the dashed one 
goes for  zero pressure case. The horizontal dashed line defines the  upper limit of the phonon spectrum, ωmax = 2.995. The empty circles 
connected by solid lines on both figures represent the calculated frequency of DB shown in Fig. 1 (a) and 1 (c) from the amplitude of its  
central atom vibrations.

b)a)

b)a)



60

Fomin et al. / Letters on materials 6 (1), 2016 pp. 57-60

less than that for DB located in the closely-packed row. High 
symmetry and low degree of localization of the new type DB 
is the probable obstacle for its movement ability through the 
crystal.
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