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The analogies between coherent matter waves in Bose-Einstein condensates of atomic gases and coherent photons have 
been discussed in connection with possible realization of an “atom laser”. Theoretical discussions of the atom laser have 
considered the case in which atoms are fed into and coupled out of the condensate continuously. Here we discuss the analogy 
between the output coupler for the trapped coherent matter waves and collective nonlinear energy transfer in a system of 
three coupled pendulums with variable parameters. One pendulum in the system is weakly coupled through a spring with the 
pair of pendulums, which are tightly bound through a common string. We show that self-sustained oscillations of the energy 
distribution between the weakly coupled and tightly bound subsystems can occur.  In our simulations, the coherent fraction 
of the total mechanical energy of the system, which is periodically transferred  to the weakly linked subsystem, can be of the 
order of 1/4000 and even smaller. These periodic oscillations in the energy distribution are similar, and their time evolution 
is described by similar functions of time, to the quantum Rabi oscillations in the populations of the trapped and untrapped 
(out-coupled) states in the coherent output coupler for atoms in Bose-Einstein condensate. The described effects can be used 
for the coherent control of the transfer of mechanical energy on the micro- and nano-scales.
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1. Introduction 

Realization of Bose-Einstein condensation in atomic gases 
provides samples of atoms with a macroscopic population 
in the ground state of the system. This population forms a 
coherent matter wave and is described by a macroscopic 
wave function, which is the solution of the nonlinear 
Gross-Pitaevskii equation. The analogies between coherent 
matter waves and coherent photons have been discussed in 
connection with possible realization of an “atom laser” [1].

Theoretical discussions of the atom laser have considered 
the case in which atoms are fed into and coupled out of the 
“lasing mode” continuously. The output coupler for Bose 
condensed atoms in a magnetic trap has been demonstrated, 
in which Bose condensate in a superposition of trapped and 
untrapped hyperfine states was created with short pulses of 
radio-frequency radiation, and the fraction of out-coupled 
atoms was adjusted between 0% and 100% by varying the 
amplitude of  radiation [2]. 

Here we discuss the analogy between the output coupler 
for the trapped coherent matter waves and the nonlinear 
coherent energy transfer in a system of three coupled 
mechanical oscillators (pendulums) with variable parameters. 
One pendulum in the considered system is weakly linked 
with a pair of pendulums that is tightly bound through a 
common string. We show that self-sustained oscillations of 
the energy distribution between the weakly linked and the 
tightly bound subsystems can occur. In our simulations, the 
coherent fraction of the total vibration energy of the system, 
which is periodically given to the weakly linked subsystem, 

can be less than 1/4000. These oscillations of the energy 
distribution and coherent energy transfer are similar, and 
their time evolution is described by similar functions of 
time, to the quantum Rabi oscillations in the populations of 
the trapped and untrapped (out-coupled) states, which were 
observed in the coherent output coupler for sodium atoms in 
Bose-Einstein condensate [2].

2. Model

We start from the following Lagrangian: 
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where φ1,2 and l1,2 are the deflection angles and string lengths of 
pendulums 1 and 2, l20 is the initial string length of pendulum 
2 in the pendulum pair of particles 2 and 3, k12 is the coupling 
constant between particles 1 and 2, g is gravity acceleration.  
The corresponding equations of motion are:   
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From the physical point of view, the described energy 
exchange can be considered as nonlinear targeted energy 
transfer [3-6]. The nonlinearity of the system is due to the time 
dependence of the string of the pendulum 2, which is tightly 
bound through the common string with particle  3 (which 
moves only vertically). The initial conditions correspond 
to the impact excitation of particle 1 in the pendulum 1, 
which is weakly coupled to particle 2 through the spring 
with constant  k12 . The string of pendulum 1 is shorter 
than the initial string of pendulum 2, l1 < l20. The masses of 
pendulums 1 and 2 are equal, m1 = m2, while the mass of the 
particle 3 is larger, m3 > m2. The particles 2 and 3 are initially 
at rest. Because of l1 < l20 and m3 > m2 , initially non-resonant 
pendulums 1 and 2 pass through the internal resonance due to 
slow (adiabatic) shortening of the string of pendulum 2 l2(t). 
The adiabatic sweep through the internal resonance results 
in irreversible transfer of vibration energy from pendulum 1 
to pendulum 2. At this stage, the irreversible energy transfer 
between pendulums 1 and 2 reveals the vibration analogue 
of the nonadiabatic Landau-Zener tunneling, which has 
been predicted and experimentally confirmed in a system of 
two coupled parametrically driven pendulums [7,8]. But the 
centrifugal kinetic energy of pendulum 2, 2 2

2 2 20.5 ( )ϕm l  , stops 
the shortening of its string at some moment and the string 
length starts to increase, up to the initial length l20 . At this 
moment the total (cumulative) vibration energy of particles 
2 and 3 returns back to pendulum 1, and particles 2 and 3 are 
again at rest.

3. Results and discussion 

In Fig. 1(a) we show the time dependences of the energy 
of pendulum  1, E1 , the cumulative energy of particles 2 
and 3, E2 + E3 , and the total conserved energy of the system, 
ET = E1 + E2 + E3 . In our simulations, we use the following 
initial conditions and parameters (which are close to that 
which were used in simulations and experimental setup 
in Ref. [8]): l1 =  0.305 m, l2(0) = l20 = 0.375 m, 2 (0) 0l

•

= , 
m1 = m2 = 0.244 kg, m3 = 1.003m2 , k12 = 0.99 N/m, φ1(0) = 0, 
φ2(0) = 0, 2 (0) 0ϕ

•

= , 1 (0) 0.143ϕ
•

=  rad/s.  
The time evolution of the energies E1 and E2 + E3 can be 

approximated with high accuracy by the parameterization of 
the three-state atomic system in a coherent superposition of 
the trapped and out-coupled states, cf. Ref. [2]:
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where ωR is the frequency of the Rabi-like coherent beats, 
which is determined by the coupling constant k12 between 
pendulums 1 and 2, 
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and is equal in our simulations to 0.427 s−1. On the other 
hand, our system operates in the double-resonance conditions 
when the frequency ωR /2 coincides with the characteristic 
frequency ωl  =  π/(2tl ) of the periodic shortening and 
elongation, from l20 to almost zero during tl , of the string l2 
of pendulum 2:
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Fig. 1. (Color online) Time dependences of energy of pendulum 1 E1 , red lines 1 in (a) and 2 in (b), of cumulative energy of particles 2 and 
3 E2 + E3, blue lines 2 in (a) and (b), and of total energy ET = E1 + E2 + E3 , magenta lines 3 in (a) and (d). Green lines 2 and 1 in (b) and (c) 
show the analytical prediction given by Eqs. (5) and (6), respectively. Lines 1 and 2 in (d) show the time dependences of the energies of 
particles 2 and 3 separately.  
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In Fig. 1(d) we show the time dependences of the energies 
of particles 2 and 3  separately. Since energies in all plots are 
shown in absolute (SI) units, one can see that the magnitudes 
of maximal energies of particles 2 and 3 are larger than 
maximal energy of pendulum 1 in a proportion close to 
4000:1! As one can also see from Figs. 1(a) , 1(b) and 1(c), 
so high ratio between the total and the given to pendulum 
1 energies does not destroy the coherence of the system for 
the long time. Doubling of the initial deflection angle velocity 
of pendulum 1, 1(0)ϕ

•

, changes only the ratio between the 
maximal energies of particles 2 and 3 and the maximal energy 
of pendulum 1, making it close to 900:1, but almost does not 
change the characteristic time dependences and periods 
of energy transfer.  Further increase of 1(0)ϕ

•

 results in the 
gradual enhancement of weak randomness of the nonlinear 
energy transfer between the subsystems, which is caused by 
the faster loss of coherence.  

The described effects can be used for the designing of the 
devices, which can serve as controllable sources of coherent 
pulses of mechanical energy on the micro- and nano-scales. 
These effects can also be used for the “mechanical cooling” 
of a single oscillator weakly attached to energetic mechanical 
system with variable parameters.  
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