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In many-body nonlinear systems with sufficient anharmonicity, a special kind of lattice vibrations, namely, Localized 
Anharmonic Vibrations (LAV) can be excited either thermally or by external triggering, in which the amplitude of atomic 
oscillations greatly exceeds that of harmonic oscillations (phonons) that determine the system temperature. Coherency and 
persistence of LAV may have drastic effect on chemical and nuclear reaction rates due to time-periodic modulation of reaction 
sites. One example is a strong acceleration of chemical reaction rates driven by thermally-activated ‘jumps’ over the reaction 
barrier due to the time-periodic modulation of the barrier height in the LAV vicinity. At sufficiently low temperatures, the 
reaction rate is controlled by quantum tunneling through the barrier rather than by classical jumping over it. A giant increase 
of sub-barrier transparency was demonstrated for a parabolic potential well with the time-periodic eigenfrequency, when 
the modulation frequency exceeds the eigenfrequency by a factor of ~2 (parametric regime). Such regime can be realized 
for a hydrogen or deuterium atom in metal hydrides / deuterides, such as NiH or PdD, in the vicinity of LAV. We present 
an analytical solution of the Schrödinger equation for a nonstationary harmonic oscillator, analyze the parametric regime 
in details and discuss its applications to the tunnel effect and to D – D fusion in PdD lattice. We obtain simple analytical 
expressions for the increase of amplitude and energy of zero-point oscillations (ZPO) induced by the parametric modulation. 
Based on that, we demonstrate a drastic increase of the D – D fusion rate with increasing number of modulation periods 
evaluated in the framework of Schwinger model, which takes into account suppression of the Coulomb barrier due to lattice 
vibrations.

Keywords: localized anharmonic vibrations, correlation effects, zero-point energy, tunnel effect, low energy nuclear reactions, nuclear 
active sites.

1. Introduction

Catalysis is at the heart of almost every chemical or nuclear 
transformation process, and a detailed understanding of the 
active species and their related reaction mechanism is of 
great interest [1 – 2]. There is no single theory of catalysis, 
but only a series of principles to interpret the underlying 
processes. An important parameter of the reaction kinetics 
is the activation energy, i.e. the energy required to overcome 
the reaction barrier. The lower is the activation energy, the 
faster the reaction rate, and so a catalyst may be thought 
to reduce somehow the activation energy. Dubinko et al 
[3 – 8] have shown that in a crystalline matrix, the activation 
energy may be reduced at some sites due to a special class 
of localized anharmonic vibrations (LAV) of atoms, known 
also as discrete breathers or intrinsic localized modes arising 
in regular crystals. LAV can be excited thermally [3, 4] or 
by irradiation [3, 5], resulting in a drastic acceleration 
of chemical reaction rates driven by thermally-activated 
‘jumps’ over the reaction barrier due to the time-periodic 
modulation of the barrier height in the LAV vicinity. 
However, at sufficiently low temperatures, the reaction rate is 
controlled by quantum tunneling through the barrier rather 
than by classical jumping over it. The tunneling probability 

averaged over the Boltzmann distribution for the energy E is 
given by an integral [9]
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with the tunneling coefficient (TC) given by the Gamow 
factor
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where 2πħ is the Planck constant, V(r) is the potential 
barrier, μ is the reduced mass, r1, r2 are the two classical 

turning points for the potential barrier.
This approach assumes that dynamical behavior of the 

reactants does not affect the TC, which is fully described by 
their energies. However, tunnel effect is inherently related to 
the operation of the uncertainty principle for motion along 
one co-ordinate, which have been generalized with account 
of correlation effects by Schrödinger [10] and Robertson [11], 
resulting in the following uncertainty relation (UR):
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( )2σ = −x x x ,    ( )2σ = −x p p , (4)

ˆˆ ˆ ˆ 2= + −σ xp xp px x p , (5)

where σxp is the mutual dispersion between the coordinate, x, 
and momentum, p. At σxp = 0 (non-correlated state), and eq. 
(3) is reduced to the well-known Heisenberg UR, whereas at 
σxp > 0 one has ħef > ħ 1, which increases the uncertainty of 
coordinate and momentum and hence the tunnel probability 
may increase as Għ/hef. Therefore, the question arises about 
the conditions that could bring the reactant in a coherent 
correlated state (CCS) [13], which are the quantum states 
corresponding to the equality in the UR (3) and non-zero 
mutual dispersion.

Vysotskii et al [13] demonstrated that a CCS can be 
formed in a parabolic potential well with the time-periodic 
eigenfrequency. It appears that an optimal modulation 
frequency Ω that results in the most rapid increase of σxp is 
close to 2ω0 (parametric frequency): |Ω – 2ω0| < gω0, where 
ω0 is the mean eigenfrequency and g is the modulation 
amplitude.

Dubinko [7] has argued that such regime can be 
realized for a hydrogen or deuterium atom in metal 
hydrides / deuterides, such as NiH or PdD, in the vicinity of 
so called gap breathers — a sub-class of LAV arising in the 
H / D sub-lattice. A large mass difference between the metal 
and H / D atoms provides a wide phonon gap, in which gap 
breathers exist. Based on the numerical calculations of 
ħef obtained in [13], it has been shown that the tunneling 
probability for the D – D fusion under electrolysis in heavy 
water may increase enormously with increasing number of 
LAV cycles resulting in the fusion rates comparable with 
experimental data.

In the present paper, we present an analytical solution 
of the Schrödinger equation for a nonstationary harmonic 
oscillator, analyze the parametric regime Ω = 2ω0 in details 
and discuss its applications to the tunnel effect.

2. Solution of the Schrödinger equation 
for a nonstationary harmonic oscillator

Consider a harmonic oscillator with time-dependent 
frequency for a particle with the mass m obeying the 
nonstationary Schrödinger equation of the form

( )22 2
2

22 2
∂ ∂

= − +
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ωψ ψ ψ
m t

i x
t m x



 . (6)

The solution of the equation (6) can be expressed using 
the Green`s function (or propagator):

( ) ( ) ( )0 0 0 0 0, , ; , ,
+∞

−∞

= ∫ψ ψx t dx G x t x t x t  (7)

The propagator G(x,t;x0,t0) satisfies the Schrödinger 
equation (6) and the following initial condition:
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1 Note that the definition of ħef by eq. (3) is more straightforward than 
the one used in refs [12, 13], but both definitions are mathematically 
equivalent.

The expression for the propagator has the form [14]:
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where the functions Y = Y(t), Z = Z(t) are defined by the 
following equations and initial conditions that can be derived 
from the condition (8):
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The functions Y(t), Z(t) satisfy the condition [14]:

( ) ( ) ( ) ( ) 1− =
dZ t dY t

Y t Z t
dt dt

. (15)

Consider the initial wave function of the Gaussian form [15]:
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where the characteristic length is given by

0=ξ ωm . (17)
Then the expression for the wave function for the arbitrary 

moment of time ∀t > t0 = 0 can be obtained from equations 
(7), (9), (10), (16):
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The probability density of finding the particle at (x, t) is 
given by the square of the wave function, while the x, p and 
x-p dispersions are given by the following expressions:
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Consider special cases of interest.

2.1. Constant eigenfrequency:

ω(t) = ω0 = const (26)
The wave function (18) for t > t0 = 0 takes the form:
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whence it follows that the x and p dispersions are constant
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as well as the mean kinetic, potential and total energy:

0

2 4
= = =

ω
k p

E
E E  , (29)

while the mutual x-p dispersion is zero: σxp = 0. 

2.2. Time-periodic eigenfrequency

Consider the Mathieu equation [16] that has the same form 
as eqs. (11) and (13):

 ‥x + ω0
2 [1 – g cos(2ω0t)] x = 0, (30)

which solution can be written explicitly in the first 
approximation to the small modulation amplitude g << 1: 

x(t) = a(t) cos[ω0t + ϑ(t)],  (31)

where    ( ) ( ) ( )2 2= +a t u t v t , (32)
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u(t) = C1 e
 η + C2 e

–η , (34)

ν(t) = –C1 e
 η + C2 e

–η , η = (g ω0
 t)/4. (35)

Then the approximate solutions of the Cauchy problems 
(11) — (14) are given by:
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Substituting eqs. (36), (37) in (23)  — (25) one obtains 
the first approximations for dispersion of the coordinate and 
momentum:
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The first approximation of the mutual x-p dispersion is 
given by

( ) ( )0
0sinh cos 2

2 2
 =  
 

ωσ ωxp
g tt t  (40)

Finally, the first approximation for the mean energy takes 
a simple form:
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  (41)

The most evident result of the parametric modulation 
of a parabolic potential well is increase of the coordinate, 
momentum and mutual dispersion with increasing number 
of oscillation periods, N, which results in rapidly increasing 
probability to find the oscillating particle far beyond the 
characteristic length of the stationary well ξ (Fig. 1). It means 
that the amplitude of the oscillating factor ħef /ħ grows with 
N, but the most intriguing new result is a rapid growth of the 
oscillator zero-point oscillation (ZPO) energy (eq. (41)) and 
ZPO amplitude in x and p space, which deserves a special 
attention as argued bellow.

3. Zero-point oscillation amplification

Continuous ZPO energy increase (Fig. 2) is different from 
the quantum energy increase to the higher oscillation levels: 
En = ħω0 (1/2 + n), when the probability density becomes 
concentrated at the classical “turning points”. In contrast to 
that, we clearly deal with the ground (zero-point) state, in 
which the probability density is concentrated at the origin, 
which means the particle spends most of its time at the 
bottom of the potential well. However, the dispersion of 
its position and momentum increases along with its zero-
point energy due to the parametric modulation. It is well 
known that zero-point energy can be derived from the 
uncertainty principle [17], and it is determined only by the 
eigenfrequency and the Plank constant: E0 = ħω0 /2. Let us 
define a ZPO amplification factor as the ratio of the zero-
point energy (eq. (41)) to its stationary value:

( )0

0
cosh cosh

2
= = =

ω
πN

N
E g tA g N
E

, (42)

Fig. 1. Localization probability distribution vs. the number of 
oscillation periods N = ω0t / 2π = t / T in the parametric regime Ω = 
2ω0 at g = 0.1.
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which is shown in Fig. 2 along with the oscillating amplification 
factors for kinetic and potential energies. In contrast to the 
latter, ZPO amplification factor grows adiabatically with 
time. It is known that tunnel effect is inherently related to 
the operation of the uncertainty principle similar to the 
ZPO energy, the difference being that for the tunnel effect 
the coordinate is one in which the potential energy passes 
through a maximum, whereas for ZPO energy it passes 
through a minimum [9].

By equating the average potential energy, mω0
2Λ2/2 

to half the ZPO energy EN /2 one obtains the mean square 
displacement from the equilibrium position

2 2
02

00 2
Λ = = = Λ

ωω
N

N N N
E A A

mm
 ,  0

02
Λ =

ωm


, (43)

where Λ0 is the ZPO amplitude in a stationary state.
Note that the amplitude of oscillating factor ħef  /ħ deduced 

from the Schrödinger-Robertson UR (eq. (3)) with account 
of eq. (40) coincides with amplitude of amplification of 
kinetic and potential energy shown in Fig. 2. In the following 
section, Eqs. (42) — (43) will be used for the evaluation of the 
D – D fusion rate in the PdD lattice.

4. D – D fusion in PdD lattice

According to Parmenter and Lamb (P&L) [18], the total 
effective potential for a deuteron pair in PdD lattice can be 
described by the Thomas-Fermi method, and it is given by 
the sum of two terms:

( )
2 2

20 0

0
exp

2
 −

≈ + − −  

ω
λeff

D

m R reV r r
R r

, (44)

where the first term is the harmonic potential well (HPW) 
formed by conduction electrons, in which a deuteron is 
trapped, and the second term is the Coulomb repulsion 
between the deuterons screened by the electrons; r is the 
displacement from the equilibrium position, R0 is the D – D 
equilibrium distance, m is their mass, e is the electron charge 
and λD is the Debye screening length. At (R0 – r) → rnucl ~ 
3·10–5 Å, the barrier Veff → 0.44 MeV is very high but finite 
and narrow.

We will take the following potential parameters: the 
eigenfrequency ω0 = 50 THz is based on the neutron 
scattering analysis of DOS in PdD0.63 crystal by Rowe at al [19] 
used for the gap breather analysis in [7]. The screening length 
λD = 0.046 Å corresponds to the screening potential of 310 eV 
measured by the yields of protons or neutrons emitted in the 
D(d, p)T or D(d, n)3He reactions induced by bombardment 
of D-implanted Pd [20].

In addition to the electron screening considered by P&L, 
a substantial suppression of the Coulomb barrier may be 
possible at the expense of lattice vibrations, as was argued by 
the Nobel Laureate Julian Schwinger [21, 22], who was the 
first to point out at the bridge between the lattice vibrations 
and nuclear fusion. According to [21] the effective potential 
of the d+d and p+d interactions is modified due to averaging  
0〈 〉0 related to their ZPO in adjacent harmonic potential wells, 
where 0〈 〉0 symbolizes the phonon vacuum state. The resulting 
effective interaction potential is given by eq. (29) in [21]:
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Accordingly, the rate of fusion has been evaluated by 
Schwinger [22] as the rate of transition out of the phonon 
vacuum state, which is reciprocal of the mean lifetime T0 of 
the vacuum state:

( ) ( )0 00

1 2= −π δV H E V
T

 , 
2

20
2

= +
ωmH r V  (46)

where H is the system Hamiltonian, E the energy, and V is the 
anharmonic addition to the potential energy.

After a lengthy math, Schwinger derives a surprisingly 
simple expression for the fusion rate via the main nuclear and 
atomic parameters of the system:

1/2 3 2
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21 12 exp
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π ω
πω
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r R
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 , (47)

at Enucl = 23.8 MeV being the mass difference between 2 D and 
He4, Λ0 = 0.1 Å; R0 = 0.94 Å deduced from X-ray measurements 
on hydrided Pd, and R0 was the equilibrium spacing of two 
deuterons placed in one site in a hypothetical PdD2 lattice. 
Even at such small separation, the resulting fusion rate was 
~ 10–19 s–1, which was too low to explain the observed excess 
heat generated in Pd cathode under D2O electrolysis.

Now consider evolution of the localization probability 
distribution in the HPW in parametric modulation regime 
with increasing N shown in Fig. 3. The ZPO amplitude 
increases with N up to 2.5 Å at N = 17 (for ω0 = 50 THz) 
or N = 25 (for ω0 = 320 THz), as shown in Fig. 4, which 
defines the validity domain of the HPW approximation, 
beyond which the total potential at the classical turning point 
deviates strongly from HPW. Note that the validity domain 
shifts upward with increasing N with account of Schwinger 
effect, while the maximum effective barrier height decreases, 
as shown in Fig. 5.

At N = 17, ZPO energy reach a level of several eV (Fig. 6), 
which in itself is too low for any significant tunneling through 
the Coulomb barrier. However, taking into account the ZPO 
effect by Schwinger and ZPO amplification factor given by 
eq. (42), the fusion rate given by eq. (47) increases drastically 
with increasing N:

1/2 3 2
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0
21 12 exp

2
π ω

πω
       −     Λ Λ       

nucl

N nucl N N

r R
T E




, (48)

which is illustrated in Fig. 7.

5. Discussion

The parametric modulation of the HPW analyzed in the 
present paper was suggested to take place for a hydrogen or 
deuterium atoms in metal hydrides / deuterides, such as NiH 
or PdD, in the vicinity of gap breathers in a regular lattice [7] 
or LAV arising in small clusters [4, 8]. Their existence and 
stability is of nonlinear origin, which poses an important 
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question of the nonlinearity impact on the correlation eff ects 
found for a modulated HPW.

Another important problem concerns the practical ways 
of LAV excitation in crystals and clusters. Heating helps to 
excite LAV since it enhances thermal fl uctuations of atoms 
from equilibrium positions [3], but the LAV lifetime (which 
determines the number of periods in the parametric regime) 
is expected to decrease with increasing temperature and 
hence, the catalytic effi  ciency of LAV may decrease drastically. 
Th erefore, we need ways to excite LAV at suffi  ciently low 
temperatures, which can be done by applying gamma, 
electron or ion irradiation in the energy range suitable for 
displacement of H / D atoms suffi  ciently far away from their 
equilibrium positions to enter nonlinear vibration regime but 
not too far, in order to avoid formation of structural defects.

Th e work by Chernov et al [23] on the excitation of 
hydrogen subsystems in metals by external infl uence give a 
strong support to this view. Th ey conclude that ‘under external 
energy input (for instance by means of radiation) an excitation 
of vibrations occurs in the hydrogen subsystem. Th e following 
facts point to this: intensive migration, diff usion and release 

Fig. 2. (color online) Ratio of the zero-point energy to its stationary 
value in the parametric regime at g = 0.1 according to eq. (42).

Fig. 3. (color online) Localization probability distribution in the 
HPW shown by red (x) at diff erent N in the parametric regime Ω = 
2ω0 = 100 THz, g = 0.1.

Fig. 4. (color online) Zero-point energy increase in the HPW in the 
parametric regime Ω = 2ω0 = 100 THz, g = 0.1.

Fig. 5. (color online) Th e maximum eff ective barrier height with 
account of ZPO eff ect by Schwinger.

Fig. 6. (color online) Zero-point energy increase in the HPW in the 
parametric regime at g = 0.1.

Fig. 7. (color online) D – D fusion rate vs. N, according to eq. (48) 
with account of eqs. (42) and (43).

parametric regime at g

parametric regime Ω = 2 0 g
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of hydrogen isotopes from metals at low temperature; super-
linear dependence of H, D release from metals on the electron 
current density and H, D concentration; H and D release from 
the whole volume of samples during the irradiation process by 
focused electron beam; H and D release in both molecular and 
atomic forms’.

Note that all the listed phenomena belong to the realm of 
chemical reactions, which accompany the ‘excess heat’ and 
nuclear products measured in these experiments. It shows 
that both nuclear and chemical reaction triggered by ‘external 
influence’ have the same origin, and LAV is a good candidate 
to be the one.

Note that all the listed phenomena belong to the realm of 
chemical reactions, which accompany the ‘excess heat’ and 
nuclear products measured in these experiments. It shows 
that both nuclear and chemical reaction triggered by ‘external 
influence’ have the same origin, and LAV is a good candidate 
to be the one.

6. Conclusions and outlook

Analytical solution of the Schrödinger equation for a 
periodically driven harmonic oscillator is derived.

The oscillator zero-point energy, which is inherently 
related to the operation of the uncertainty principle, is shown 
to increase in response to parametric modulation. Based on 
that, a drastic increase of the D – D fusion rate with increasing 
number of modulation periods was demonstrated in the 
framework of Schwinger model, which takes into account 
suppression of the Coulomb barrier due to lattice vibrations.

The present concept may provide a basis for the low energy 
nuclear reactions in solids as well as for the low temperature 
chemical reactions controlled by the tunnel effect.

Atomistic modeling of LAV of various types in metal 
hydrides / deuterides is an important outstanding problem 
since it may offer the ways of engineering the chemical and 
nuclear catalysts.
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