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The superlattices of discrete breathers in the 1D crystal model
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The dynamics of the discrete breather superlattices in the model of the 1D anharmonic Hirota lattice is considered. The 
analogues of the discrete breather for the finite-size system with periodic boundary conditions are presented. For the analogue 
of the discrete breather for the finite-size system the stability and the effect of dissipation on the dynamics are discussed. Using 
the exact solutions of the Hirota lattice equation in the form of discrete breather superlattices the asymptotic interaction 
energy between two breathers is investigated. It is shown that for the considered parameters of the solutions discrete breathers 
in the superlattice of type I repel, while in the superlattice of type II attract each other.
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1. The 1D Hirota lattice model. 

The concept of discrete breathers has become the one of the 
most intriguing topics in the solid state physics. Discrete 
breathers (DB) or localized anharmonic vibrations (LAV) 
are the dynamically stable spatially localized and periodic 
in time nonlinear excitations of the lattice systems [1, 2]. 
DBs play an important role in the nonlinear dynamics of 
the lattices, conducting properties, phase transitions and 
catalysis processes in solids. During the last decade a great 
amount of numerical investigations on DB using molecular 
dynamics (MD) method and density function theory 
(DFT) in the models of different materials e.g. metals, ionic 
crystals, graphene and graphane, carbon nanotubes and 
other materials has been made [1-6]. In the review [7] the 
results on gap DBs in two- and three-dimensional crystals 
have been summarized. In [8] the molecular-dynamics 
simulations of DBs in the crystals with NaCl structure with 
different ratios of atomic masses of components have been 
presented. 

In this paper the properties of single DBs and the 
superlattices of DBs in the exactly intagrable model of the 
anharmonic atomic chain - Hirota lattice - is considered 
[9-15]. The exactly integrable models of the lattice systems 
are important because for these models it is often possible 
to obtain the analytic expressions for the lattice excitations 
and for their main physical characteristics such as energy, 
momentum, etc. The most studied integrable lattices are the 
Toda lattice [16] and the system of Ablowitz-Ladik [17].

Hirota lattice is a model of the one-dimensional 
anharmonic chain of atoms, for which only the nearest 
neighbors’ interaction is taken into account [10, 11].
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where un is the displacement of the n-th atom in the chain. 
The kinetic term of (1) is a similar as one for the modified 
discrete sine-Gordon model [18]. In the right side there are 
the nonlinear (tangential) interaction forces between the 
nearest neighbors. Equation (1) is equivalent to the exactly 
integrable system of the nonlinear self-dual network (NSDN) 
equations [9, 19] for currents strengths (In ) and voltages 
(Vn ) describing the transmission line with the nonlinear 
inductances L(In ) and capacitances C(Vn). 
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( ) ( )1 1arctan , arctan .− −= =n n n n n nC V V V L I I I 	 (3)

The NSDN equations are the nonlinear telegraph 
equations.
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the Hirota lattice equation has the form: 
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The integral of motion energy corresponding to the 
equation (5) has the form [10, 11]:
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For small values of the displacements and velocities of 
atoms the Hirota lattice model reduces to the β-Fermi-Pasta-
Ulam (β-FPU) lattice model [20]. Equation (5) is equivalent 
to the discrete modified Korteweg – de Vries (dmKdV) 
equation [9]. In the long-wave limit equation (5) reduces 
to the continuous modified Korteweg – de Vries (mKdV) 
equation [9].

R.  Hirota [9] has shown that the system of NSDN 
equations (2), (3) and equation (5) are exactly integrable and 
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has found their multi-soliton solutions. M.M.  Bogdan [10] 
obtained the moving and standing discrete breather solutions 
for the equation (5) for the first time. In the dimensionless 
coordinates the standing DB solution of the equation (5) has 
the form:
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The cyclic frequency of oscillations equals 
( )2cosh 2 .ω κ= ± 	 (8)

The DB solution of the equation (5) has the similar 
structure as the breather of sine-Gordon equation. Zhou et 
al. [21] have obtained the discrete breather solution (7) of the 
equation (5) using the wronskian technique. The expression 
(7) is the solution of equation (5) for the infinite lattice. It can 
be used for description of the highly localized excitations far 
from the boundaries in the finite-sized lattices. The energy of 
discrete breather (7) in the infinite chain equals [6, 7]:

κ=bE .	 (9)
The generalized models of the 1D anharmonic crystal 

and equivalent nonlinear transmission line contain the terms 
corresponding to the dissipation processes and the action of 
the external forces [22]. The equation for the generalized 1D 
Hirota lattice model has the form:
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where λ is the dissipation constant, fn
(ext)(t) is the external 

varying in time force. The generalized system of the NSDN 
equations describing the equivalent nonlinear transmission 
line in dimensionless units has the form [22]:
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where C(Vn), L(In ) are determined by equation (3), G is 
the conductivity of the nonideal insulator, R is the active 
resistance of the wires and En(t) is the external electromotive 
force. In [23] the periodic vibrations that represent the 
symmetry-determined nonlinear normal modes have been 
investigated using the group-theoretical method in the LC- 
and LCR-transmission lines.

2. The superlattices of the discrete 
breathers and shock waves 

In [22] the new classes of periodic solutions expressed in 
terms of the Jacobi elliptic functions have been obtained for 
the Hirota lattice model and equivalent system of NSDN 
equations.

The obtained solutions are the spatially periodic waves 
describing the discrete breather and shock wave superlattices 
in the infinite lattice and in the lattice with arbitrary finite 
number N of sites with the periodic 

( ) ( )φ φ+ =n N nt t 	 (12)
and zero-fixed 

( ) ( )1 0φ φ= =Nt t 	 (13)
boundary conditions. In the small-amplitude limit these 
solutions reduce to the linear running and standing waves 
and in the essentially nonlinear limit to the separated discrete 
breathers or one-parametric solitons (kinks and antikinks).

A.S.  Kovalev [24] has obtained the similar periodic 
solutions for the sine-Gordon equation. In [25] the breather 
lattice solution of the sine-Gordon equation has been 
investigated. In [26] the exact periodic solutions of the 
positive and negative modified Korteweg-de Vries equations 
have been found.

For brevity we will use the following notations: sn(θ,χ), 
cn(θ,χ), dn(θ,χ) are the Jacobi elliptic functions, χ, μ are the 
modules of the elliptic functions, 21χ χ′ = − , 21µ µ′ = −  are 
the additional modules of the elliptic functions.

The standing discrete breather superlattice of type  I 
solution of the equation (5) has the form (Fig.1).
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It is easy to see that the time and spatial periods of the 
superlattice of type I equals respectively
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Since the function dn(θ,μ) ≠ 0, ∀θ zero-fixed boundary 
conditions (13) are not satisfied for the solution (14). 

Suppose that the length of the chain contains the integer 
number M of the real spatial periods of the solution (M is a 
number of breathers in the superlattice). Periodic boundary 
condition (12) is satisfied if
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I
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κ
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

.	 (17)

For μ → 0 the equations (14), (15) reduce to the solution 
describing the nonlinear homogeneous antiphase oscillations.
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Fig. 1. Breather superlattice of type I. The number of sites in the 
lattice N = 30, the number of breathers in the superlattice M = 6, 
the value of the elliptic modulus μ = 0.9999 corresponds to the large 
separation of breathers in the superlattice. Time equals the quarter 
of period t = TI/4. For the considered values of the parameters 
breathers oscillate in the opposite phase.
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For χ → 0, μ → 1 the solution (14), (15) reduces to the 
standing discrete breather. If M = 1 expressions (14)-(17) 
represent the analog of discrete breather for the finite-sized 
lattice (Fig.2).

Using the Runge-Kutta method the linear stability of 
the analogue of discrete breather (M = 1) for the finite-sized 
lattice has been investigated. The evolution of the lattice was 
modelled using the initial conditions corresponding to the 
breather superlattice of type I (SLI) (14) with linear sinusoidal 
perturbation. 

( ) ( )( I)0 0.01sinφ φ= = +SL
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n n

d dt
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.	 (20)

The corresponding contour plot is shown in Fig.3. 
Simulations demonstrate the linear stability of the analogue 
of discrete breather.

The dynamics of the analog of the DB in the finite-sized 
lattice has been also modelled numerically (Fig.4). The 
dissipation coefficient of the equation (10) equals 

λ = 0.1.	 (21)

From Fig 4 it is seen that nonlinear excitation loses 
energy due to the dissipation. The life-time of the DB analog 
is approximately 30 periods.

The standing discrete breather superlattice of type II has 
the form (Fig.5).
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It is easy to see that the time and spatial periods of the 
superlattice of type II equals respectively
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Zero-fixed boundary conditions (13) for the solution (22) 
can be satisfied if 

( )( )1 12 1 , 0,1,2,κ χ= + =l l  	 (25)
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Fig. 2. Breather superlattice of type I containing one breather - the 
analogue of discrete breather for the finite-sized lattice. The number 
of sites in the lattice N = 30, , M = 1, μ = 0.99, t = 3TI/4.

Fig. 3. (color online) The evolution of the analogue of discrete 
breather for the finite-sized lattice. A space time contour plot ϕn(t). 
Initial condition is the breather lattice solution of type I with linear 
sinusoidal perturbation. N = 30, M = 6, m = 0.99, λ = 0, fn

(ext)(t) = 0,  
t0 = TI/4. Time is measured in the periods of the oscillation. 
Boundary conditions are periodic.

Fig. 4. (color online) The evolution of the analogue of discrete 
breather for the dissipative finite-sized lattice. A space time contour 
plot ϕn(t). Initial condition is the breather lattice solution of type I. 
N  = 30, M = 6, m = 0.99, λ = 0.1, fn

(ext)(t) = 0, t0 = TI/4. Time is 
measured in the periods of the oscillation. Boundary conditions are 
periodic. Nonlinear excitation loses energy due to the dissipation.

Fig. 5. Breather superlattice of type II. The number of sites in the 
lattice N = 30, the number of breathers in the superlattice M = 6, 
the value of the elliptic modulus μ = 0.9999 corresponds to the 
large separation of breathers in the superlattice. Time t = 0. For the 
considered values of the parameters breathers oscillate in the same 
phase.
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Suppose that the length of the chain contains the integer 
number M of the real spatial periods of the solution (M is a 
number of breathers in the superlattice). Periodic boundary 
condition (12) is satisfied if

( )
II

4 χ
κ

= Λ =N M M


.	 (27)

For χ → 1, μ → 0 solution (22) reduces to the standing 
discrete breather. 

The superlattices of type I and type II containing only 
two breathers each (Fig. 6) were considered and the energy of 
these superlattices were calculated.

By the definition of the integral of motion energy can be 
calculated for any arbitrary moment of time. Expression (28) 
is the energy (6) of the standing discrete breather superlattice 
of type I (14) in the chain with N nodes for the moment of 
time t = 0. 
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chain with N nodes equals
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The energy of the standing discrete breather superlattice 
of type II in the chain with N nodes for the moment of time: 
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In Fig. 7 the dependence of energy on parameter of the 
solution κ  for breather superlattices of type I and II (SL of 
type I, SL of type II), homogeneous anti-phase oscillation 
(HAO) and two free discrete breathers is shown. 

It is seen, that for the chosen values of the solutions 
parameters the energy of superlattice of type I containing 
two breathers is larger then the energy of two free breathers, 
i.e. the energy of breathers’ interaction in the SL of type I is 
positive. It means that the character of interaction of breathers 
oscillating in the opposite phase is repulsion. On the other 
hand breathers in the SL of type II oscillating in the same 
phase attract each other. For large values of the parameter κ  
(large separation of breathers) the superlattices of both types 
reduce to two free discrete breathers.

In [22] the solution describing the moving discrete shock 
wave superlattice has been also found. 

In [27] the results of the inelastic neutron measurements 
performed on the NaI crystals show the existence of the 
discrete breather superlattice under certain conditions.

3. Conclusions

The dynamics of the single discrete breathers and their 
superlattices of two types in the exactly integrable model 
of the 1D anharmonic crystal – the Hirota lattice model – 
has been discussed. The periodic and zero-fixed boundary 
conditions have been considered for the arbitrary number 
of sites. The analog of the DB for the finite-size lattices has 
been presented. It has been shown that the analog of the 
DB for the finite-size lattice is linearly stable. Using the 
generalized Hirota lattice model the influence of dissipation 
on the breather dynamics has been discussed. It has been 
shown that the nonlinear excitation loses energy due to the 
dissipation. The life-time of the DB analog is approximately 
30 periods. It was shown that for the considered parameters 
of the solutions DBs in the superlattice of type I repel, while 
in the superlattice of type II attract each other.

Fig. 6. Breather superlattices. The number of sites in the lattice N = 
10, the number of breathers in the superlattice M = 2, the value of 
the elliptic modulus μ = 0.9999 corresponds to the large separation 
of the breathers in the superlattice. (a) Breather superlattice of type 
I, t = TI/4, breathers oscillate in the opposite phase. (b) Breather 
superlattice of type II, t = 0, breathers oscillate in the same phase.

Fig. 7. (color online) The dependence of energy on parameter of the 
solution κ  for breather superlattices of type I and II (SL of type I, 
SL of type II) – upper red curve and lower blue curve respectively, 
homogeneous anti-phase oscillation (HAO) - green point from 
which the SL of type I starts and two free discrete breathers – middle 
black straight line.

(a)

(b)
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