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Fermi-Pasta-Ulam (FPU) chain is well known model in which energy localized vibrations exist. Such energy localized 
vibrations are called intrinsic localized modes (ILMs) or discrete breathers (DBs). This paper discusses existence and stability 
of ILMs in a finite Fermi-Pasta-Ulam chain which is placed in three-dimensional space, namely, motion of each mass is not 
constraint to the axis of the chain. First we derive dispersion relations of longitudinal and transversal waves. It is shown that 
the dispersion relations are changed with respect to the initial stretch or compression of the chain. By using Newton-Raphson 
method, three kinds of ILM, namely, longitudinal, transversal, and rotating modes, are found in the chain. All masses moves 
along the axis of the chain in longitudinal modes. The relationship between the frequency and the amplitude distribution 
completely coincides with ILMs in the traditional FPU chain in which motions of masses are constraint along the axis. On the 
other hand, main oscillations of transversal modes are perpendicular to the axis. In rotating modes, all masses rotate around 
the axis. Distribution of the radius of rotations are localized. Stability analysis reveals that almost all the longitudinal and the 
transversal ILMs are unstable. However, we found a narrow parameter region of the initial stretch in which the transversal 
ILM becomes stable.
 Keywords: intrinsic localized mode, discrete breather, FPU chain, transversal mode, rotating mode.

1. Introduction

Intrinsic localized mode (ILM), which is also called discrete 
breather (DB), is spatially localized and temporally periodic 
solution in nonlinear lattices. Many researches, which have 
been reported since the latter half of the 20th century, show 
evidences of the existence of ILM in real physical systems 
[1]. In particular, observations of ILM in micro-structures, 
such as optic wave guides [2], Josephson junction ladders 
[3, 4], and micro-mechanical cantilever arrays [5], strongly 
suggest that ILM/DB can be utilized for applications in 
micro-/nano-technologies. 

Recently, existence of ILM/DB has been investigated in 
low-dimensional carbon materials, namely carbon nano-
tubes [6], graphene [7, 8], graphane [9], etc. In addition 
to those two-dimensional carbon materials, an extremely 
thin carbon wire, namely a carbon monoatomic chain, was 
experimentally created [10]. The numerical observations 
of ILM/DB in two-dimensional carbon materials imply the 
existence of ILM/DB in the carbon monoatomic chain. The 
carbon monoatomic chain attracts researcher’s attentions 
because of its characteristics in heat and electric conductance 
[11, 12]. The aim of our research is to investigate whether 
ILM/DB exists in a carbon monoatomic chain or not and how 
ILM/DB affects the characteristics of the chain such as heat 
and electric conductance.

In carbon monoatomic chain, carbon atoms are arranged 
in one-dimension and they are placed in three-dimensional 
space. Therefore, the atoms can move not only along the axis 
of the chain but also perpendicular to the axis. Such systems 

are already investigated for curved biopolymer chains 
[13], polymer chain with secondary structure [14], and 
polyethylene chains [15]. A simpler model which is a straight 
Fermi-Pasta-Ulam (FPU) chain is treated in this paper for 
investigating an effect of extension of the dimension of space 
in which the chain is placed.

2. FPU chain in 3D space

Fermi-Pasta-Ulam chain is originally proposed for 
investigating the equipartition of kinetic energy in nonlinear 
crystals [16]. Usually, motions of masses are constrained 
along the axis of the chain. However, if the chain is located 
in two- or three-dimensional space, the masses can move 
transversally as well as longitudinally (see Fig.1). The 
equation of motion of the masses which are allowed to move 
transversally is described as: 
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where rn is the three dimensional position vector from 
equilibrium position to each mass. dn is the distance 
vector between n-th and (n–1)-th masses and defined 
as dn  =  ln  +  rn  –  rn–1. The nonlinear spring connecting 
neighboring masses has an equilibrium length of l0. It is 
assumed that each mass is arranged along x-axis of Cartesian 
coordinate system and the entire chain is initially stretched or 
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compressed. Therefore, initial positions of masses are denoted 
by ln = (l0,0,0) + (l1,0,0), where l1 represents the initial stretch/
compression if it is positive/negative. In this paper, m, α, and 
l0 are set at unity, and the coefficient of the cubic nonlinear 
restoring force is fixed at β = 25. The number of masses is 
chosen to be eight. The boundary condition is assumed to be 
periodic, namely, d0 = d8, d9 = d1.

The dispersion relation of Eq.(1) is obtained as follows:
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whrere ωx and ωy denote angular frequency of longitudinal 
and transversal waves, respectively. Since the chain is 
cylindrically symmetric, ωz is the same as ωy . Eqs.(2) and 
(3) shows that there are upper bound for the frequencies ωx 
and ωy when the wave numbers kx and ky become π (or –π), 
respectively. To exist an ILM in Eq.(1), the ILM should avoid 
to resonate with linear plain waves[1], namely, the frequency 

of the ILM Ω should be greater than x l2
,max 12 1 3ω β= +  

and/or y l l l3
,max 1 1 12 ( ) / (1 )ω β= + + .

3. Intrinsic localized modes

In the FPU chain placed in three-dimensional space, 
three kinds of ILM possibly exist, namely, longitudinal, 
transversal, and rotating ILMs. The longitudinal ILM that 
each mass moves along the axis of the chain as shown in 
Fig.2(a). The longitudinal ILM coincides with that in the 
FPU chain in which the motion of each mass is constrained 
along the axis. Therefore, the relationship between the 
frequency and the amplitude should be the same between 
them. However, the stability should be different because an 
effect of a perturbation perpendicular to the axis should be 
considered, which will be discussed in the next section.

Figure 3 shows the wave form of two kinds of longitudinal 
ILM. In Fig.3(a), two neighboring masses, namely, the 4th 
and 5th, oscillate in antiphase with the same amplitude while 
the other masses show very small amplitude oscillations. 
This type of ILM can be called Page mode [17]. In this paper, 
the longitudinal Page mode is abbreviated as L-P mode. 
Fig.3(b) shows a different ILM from L-P mode in symmetry. 
The 4th mass has the largest amplitude and the 3rd and 5th 
masses have the same amplitude which is rather smaller 
than that of the 4th mass but sufficiently large comparing 
with the other masses. This is called Sievers-Takeno mode 
[17]. Hence, the longitudinal Sievers-Takeno mode is 
abbreviated as L-ST mode. For both L-P and L-ST modes, 
all the y- and z-components are always zero, since there is no 
perpendicular force as long as all the masses moves along the 
x-axis. Therefore, L-P and L-ST modes exactly the same as P 
and ST modes in the traditional FPU chain.

Transversal ILM in which each mass mainly vibrates 
perpendicular to the axis (see Fig.2(b)) is a specific ILM 
in the FPU chain placed in three-dimensional space. The 

Fig. 1. Configuration of FPU chain.

Fig. 2. Three kinds of ILM in FPU chain.

Fig. 3. Wave profile of longitudinal modes. T = 1, l1 = 0. The dotted line 
indicates the equilibrium position. Note that the solution is obtained 
by using the Newton-Raphson method for periodic solution. Thus, 
there is no energy radiation from the ILM core.

(b) Longitudinal ST mode

(a) Longitudinal P mode
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motions of masses are shown in Fig.4. For the transversal 
ILMs, there exist two kinds of ILM as well as the longitudinal 
ILM. They are called transversal Page (T-P) mode and 
transversal Sievers-Takeno (T-ST) mode, which are shown 
in Fig.4(a) and 2(b), respectively. For both ILMs, each mass 
mainly oscillate along y-direction instead of x-direction. As 
shown in right panels, the amplitude distribution is clearly 
localized. Interestingly, each mass except 4th and 8th masses 
in Fig.4(b) has an initial shift in x-direction even though l1 
is set at zero. It implies that the chain is compressed toward 
the center of ILM. In addition, each mass oscillates along 
x-axis with a frequency twice as much as that of the motions 
along y-axis. The reason why the motion in x-direction is 
caused is that a displacement perpendicular to the axis of the 
chain causes a restoring force not only in the perpendicular 
direction but also in the longitudinal direction. The restoring 
force in the longitudinal direction does not depend on the 
sign of the perpendicular displacement. Therefore, the 
frequency of the longitudinal force is twice as much as that 
of the perpendicular force. It implies that the frequency of 
transversal ILM ΩTILM has to satisfy both ΩTILM > ωx,max/2 and 
ΩTILM > ωy,max simultaneously.

Rotational ILM is also found as shown in Fig.5. The 4th 
and 5th masses oscillate with large amplitude. The phase 
difference between yn and zn equals π/2. Thus, all the masses 
rotate around the x-axis. In this case, the direction of rotation 
is the same among all of the masses. The phase difference 
between neighboring masses is π. Therefore, the amplitude 
distribution corresponds to that of Page mode. Then it can 
be classified into rotating Page mode. Rotating Sievers-
Takeno mode should exist as well as the longitudinal and 
the transversal ILMs. However, we could not find it so far. It 
remains for future research. 

4. Stability analysis

Generally, Page mode is not unstable in FPU chain because 
all of the characteristic (Floquet) multipliers are located 
on the unit circle in the complex plane [17]. On the other 
hand, Sievers-Takeno mode is unstable since one of the 
characteristic multiplier is located outside the unit circle 
[17]. This result is also valid for the system of Eq.(1) in 
which all the masses are constrained along the x-axis and 
the parameters are chosen as m = 1, α = 1, β = 25, l0 = 1, 
l1 = 0. All the characteristic multipliers are located on the 
unit circle as shown in Fig.6(a). However, if there is no 
constraint for masses, both the longitudinal P and ST modes 
are unstable even though the amplitude distribution and the 
wave form is completely the same as in the system having the 
constraint. In Fig.6(b), several characteristic multipliers are 
found inside and outside the unit circle, while the position of 
the other multipliers located on the unit circle is the same as 
in Fig.6(a). It implies that the longitudinal P mode becomes 
unstable because each mass is not constrained along the 
chain axis. The unstableness comes from the fact that there is 
a moment at which the chain is compressed, for instance, the 
spring between 4th and 5th masses are compressed around 
t = T/2, 3T/2. The compression will cause the buckling of 
the chain. In fact eigenvectors of characteristic multipliers 

located outside the unit circle have non-zero values in y- 
or z-components as shown in Fig.6(c). This means that the 
longitudinal ILM is unstable along the transversal direction.

The transversal ILMs are also unstable for almost all 
parameter region of the initial stretch l1. However, narrow 
regions where all the characteristic multipliers are on the 
unit circle, namely, the absolute value of them equals unity, 
are found as shown in Fig.7. The regions exist for l1 > 0.5. 
The  mechanism is not unclear so far, but an initial stretch 
tends to stabilize the transversal ILMs.

Fig. 5. Wave profile of rotating mode. T = 1.14, l1 = 0.1. The initial 
shift along the x-axis is also observed as well as the transversal ILM.

Fig. 4. Wave profile of transversal modes. T = 1, l1 = 0.

(a) Transversal P mode

(b) Transversal ST mode
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5. Conclusion

In this paper, new kinds of ILM have been researched 
for an FPU chain placed in three-dimensional space. By 
using Newton-Raphson method, we successfully found 
the transversal ILMs and the rotating ILMs as well as the 
traditional longitudinal ILMs. Stability analysis has revealed 
that almost all the ILMs in the FPU chain is unstable even 
though the longitudinal ST mode is stable in the traditional 
FPU chain in which all the masses are constraint along 
the chain axis. According to the eigenvectors of unstable 
characteristic multipliers, it is strongly suggested that the 
buckling effect makes ILMs unstable. It implies that the 
buckling effect should be taken into account for studies 
on ILM in one- or two-dimensional systems in two- or 

three-dimensional spaces, respectively, such as carbon 
monoatomic chains, graphene sheets, carbon nanotubes, etc. 
We will discuss ILM in such real nano systems in the future.

Acknowledgements. One of the authors (MK) would like 
to thank Prof. Sergey V. Dmitriev, RAS, Russia and Prof. Y. 
Doi, Osaka University, Japan for fruitful discussion. This work 
was supported by the Ministry of Education, Culture, Sports, 
Science and Technology in Japan, Grant-in-Aid for Young 
Scientists (B) No.25820164. 

References

1.	 S. Flach, A.V. Gorbach. Phys. Rep. 467, 1 (2008).
2.	 H. S. Eisenberg and Y. Silberberg and R. Morandotti and 

A. R. Boyd and J. S. Aitchison. Phys. Rev. Lett. 81, 3383 
(1998).

3.	 P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, Y. 
Zolotaryuk. Phys. Rev. Lett. 84, 745 (2000).

Fig. 6. Characteristic multipliers of P mode in (a) the traditional FPU 
chain (b) the FPU chain located in three-dimensional space. (c) x- 
and y-components of an eigenvector of the characteristic multiplier 
indicated by the arrow in (b). Note that the velocity components of 
x-axis are also zero.

(a) Characteristic multipliers of the traditional P mode.

(b) Characteristic multipliers of the longitudinal P mode.

(c) Eigenvector of the characteristic multiplier indicated by 
arrow in (b).

(b) Transversal ST mode

Fig. 7. Absolute value of the characteristic multipliers of transversal 
modes. The period of ILM is fixed at unity. The broken curves 
appeared in (a) for l1 < 0 do not indicate that there is no solution. 
In the initially compressed chain, there is a moment at which the 
neighboring masses become very close each other. Since Eq.(1) 
has the distance at the denominator, the small distance increases 
the numerical error. Only the solutions which were successfully 
converged are shown in the figure.

(a) Transversal P mode

 -0.4  -0.2  0  0.2  0.4  0.6  0.8
 0

 1

 2

 3

 4

T-ST

ℓ1

|ρ
|

Stable



26

Kimura et al. / Letters on materials 6 (1), 2016 pp. 22-26

4.	 E. Trías, J. J. Mazo, T. P. Orlando. Phys. Rev. Lett. 84, 741 
(2000).

5.	 M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski, 
H. G. Craighead. Phys. Rev. Lett. 90, 044102 (2003).

6.	 Y. Kinoshita, Y. Yamayose, Y. Doi, A. Nakatani, T. 
Kitamura. Phys. Rev. B 77, 024307 (2008).

7.	 Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, T. 
Kitamura. Europhys. Lett. 80, 40008 (2007).

8.	 Y. Doi, A. Nakatani. Journal of Solid Mechanics and 
Materials Engineering 6, 71 (2012).

9.	 G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, D. S. 
Ryabov. Phys. Rev. B 90, 045432 (2014).

10.	C. Jin, H. Lan, L. Peng, K. Suenaga, S. Iijima. Phys. Rev. 

Lett. 102, 205501(2009).
11.	N. Wei, G. Wu, J. Dong. Phys. Lett. A 325, 403 (2004).
12.	X. Chen, C. Ming, F.-X. Meng, J.-T. Li, J. Zhuang, X.-J. 

Ning. J. Appl. Phys. 114, 154309 (2013).
13.	M. Ibañes, J. M. Sancho, G. P. Tsironis. Phys. Rev. E 65, 

041902 (2002).
14.	A.V. Zolotaryuk, P.L. Christiansen, A.V. Savin. Phys. Rev. 

E 54, 3881 (1996).
15.	A.V. Savin, L.I. Manevitch. Phys. Rev. B 67, 144302 (2003)
16.	E. Fermi, J. Pasta, S. Ulam. Studies of Non Linear 

Problems. The collected papers of Enrico Fermi Vol.2. 
University of Chicago Press. (1955) p. 978.

17.	S. Flach, A. Gorbach. Chaos 15, 15112 (2005).


