
27

Letters on materials 6 (1), 2016 pp. 27-30	 www.lettersonmaterials.com

PACS 63.20.Pw, 44.10.+i

Discrete breathers: possible effects on heat transport
Daxing Xiong†, Jun Zhang

†phyxiongdx@fzu.edu.cn

Department of physics, Fuzhou University, Fuzhou, 350108, Fujian, China

Discrete breathers (DBs), also known as intrinsic localized modes, are spatially localized nonlinear vibrational modes in 
defected-free anharmonic lattices and expected to affect energy transfer process. However, whether DBs can contribute to 
thermal transport at finite temperature is still not very clear. In the present work, we briefly describe our recent results on the 
possible effects of DBs on heat transport. By employing two one-dimensional (1D) anharmonic lattice models with different 
phonon dispersions, we provide some numerical evidences to demonstrate that given the peculiar phonon dispersions along 
with nonlinearity, two kinds of DBs, i.e., the intra-band and extra-band ones, can exist in 1D lattices at finite temperature 
and thus contribute to thermal transport in different ways, i.e., the intra-band DBs can be scattering with phonons; while the 
extra-band DBs mainly localize the system energies, thus both tend to limit the heat transport in the thermodynamic limit. 
Our results here suggest that different peculiar phonon dispersions along with nonlinearity can enable us to excite different 
types of DBs, which then affect the heat transport process in different ways. These results may provide useful information for 
establishing the connection between the macroscopic heat transport process and the underlying DBs dynamics in general 1D 
nonlinear systems with various phonon dispersions.
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1. Introduction

In the past decade of the last century, discrete breathers 
(DBs), also known as intrinsic localized modes, had been 
a hot topic of nonlinear science [1-3]. Huge numbers of 
theoretical studies had devoted to confirm the existence 
and stability of DBs [4-6]. Recently there are also many 
experimental investigations on observation of DBs in real 
crystals [7-11]. Nevertheless, most of the existing theoretical 
works were only limited to the case of the focused systems 
with zero temperature, while only quite few understanding 
about the existence of DBs at finite temperature have been 
reported [12, 13]. Given DBs in thermal equilibrium, it is 
thus tempting to ask whether DBs can contribute to thermal 
transport in crystals.

In this work we briefly introduce our recent results [14-
16] on the possible roles of DBs in thermal transport. We 
will mainly employ two one-dimensional (1D) lattice models 
to describe our viewpoints. Thus, the rest of this article is 
organized as follows: In Sec. 2 the focused models are presented 
and their peculiar phonon dispersions are emphasized. With 
their phonon dispersions in mind, Sec. 3 provides the results 
of DBs properties at finite temperature. In Sec. 4 we then try 
to relate the DBs properties to heat transport behavior. Finally, 
the last section summarizes our conclusion.

2. Models

To illustrate our idea that DBs can contribute to heat 
transport, we consider the following two 1D lattice models, 
i.e., (i) Model I: the chain with both nearest-neighbor (NN) 

and next-nearest-neighbor (NNN) couplings [14, 16], and 
(ii) Model II: the chain with alternating interactions [15], 
whose dimensionless Hamiltonian can be represented by 
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respectively, where pm denotes the momentum and xm denotes 
the displacement from equilibrium position for the m-th 
particle. To include the nonlinearity, both potentials take the 
Fermi-Pasta-Ulam-β form as V(m) = m2/2 + m4/4  (β = 1). In 
Model I, the parameter γ denotes the comparative strength 
of the NNN coupling to the NN coupling; while in Model II, 
k1 and k2 (k1 ≤ k2) represent the adjacent interactions coupling 
strengths. For the latter model, usually we can fix k1 + k2 = 2 
and define γ = k1/k2 (γ ≤ 1) as a controlled parameter.

Given the Hamiltonian, then both models phonon 
dispersions can be readily obtained under linear harmonic 
approximation: 
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with q the wave number and ω the coorresponding frequency 
[in Eq. (4) ω+ (ω–) denotes the case of optical (acoustic) 
phonons].

In Fig. 1 we plot ω vs q according to Eqs. (3) and (4), from 
which both models peculiar dispersions can be clearly seen, 
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i.e., the dispersions are strongly depenent on the controlled 
parameter γ. In particular, there is a turning point of γ = 0.25 
for Model I, where the values of phase velocity of phonons 
(defined by ν = dω/dq) emerge most at ν = 0 near the Brillouin 
zone (q → ±π); while in the Model II, as long as γ ≠ 0, there 
is a gap between the acoustic and optical phonons. We expect 
that such key unusual propeties of dispersions along with 
nonlinearity may support the exsitence of DBs and thus affect 
heat transport behavior.

3. DBs properties

In view of both γ dependence of dispersions, in this 
section we will mainly focus on how the DBs properties 
would depend on γ at a given model temperature T = 2.5. 
To obtain DBs at the focused temperature, usually we can 
employ the following numerical method [17]: A chain of 
L = 2000 particles is initially thermalized with heat baths 
[18]; then the heat baths are removed, and the absorbing 
boundary conditions are imposed [19]. If DBs can exist, after 
a long enough time for absorption, leading all the mobile 
excitations, such as phonons and solitary waves absent, DBs 
then would show up in the internal segment of the chain.

Following this way we then can idendify DBs at a finite 
temperature. As some examples, we plot some snapshots of 
signgle DB’s profiles for both models in Fig. 2 and Fig. 3. As 
can be seen, both models signgle DB’s profiles also show γ 
dependence: (i) for Model I, we can clearly identify a transtion 
from Page mode [γ < 0.25, see Fig. 2(a)] [20] to Sievers-
Takeno mode [γ > 0.25, see Fig. 2(c)] [20], among which at 
γ = 0.25 we aslo see the envelope DBs with long tails [see 
Fig. 2(b)]; while for Model II, there is a transition from Page 
mode to moving DBs [see Fig. 3(d)], especially under certain 
γ values about γ = 0.34, we can also find a profile which looks 
like the case of two kinks of solitons trapped by two DBs [see 
Fig. 3(c)]. All of the reported results here clearly indicate that 
the dynamics of DBs in both models are rich after taking the 
peculiar phonon dispersions into account.

4. Relating DBs to heat transport

Now let us see how the above DBs γ-dependent dynamics 
may be related to heat transport. For this purpose, we first 
present our results on γ-dependent heat conduction behavior 
(see Fig. 4). Our results will mainly focus on how the length 
divergence exponent α [21] of heat conductivity depends on 
the controlled parameter γ. For each γ and system size, we 
employ the the reverse nonequilibrium molecular dynamics 
(RNEMD) simulation method [22] to produce the heat 
flux and then obtain the heat conductivity, finally get the 
divergence exponent α (see [14] for simulation details).

As can be seen from Fig. 4,  both systems heat conduction 
behavior show intriguing nonmonotonic γ dependence with 
a turning point of γtr = 0.25, suggesting that α might not have 
its universality in heat transport of 1D systems as conjectured 
previously in the literatures [21]. Interestingly, this turning 
point of γtr = 0.25 appears to be related to the turning point 
of phonon dispersions [see Fig. 1(a) for example] and DBs 

properties (see Fig. 2). 
In order to further verify this relation, we then carefully 

examine the power spectra P(ω) of the residual thermal 
fluctuaions for both models, which can be regarded as the 
spectra of emerging DBs along the chain at the focused 
temperature. To measure P(ω), for each γ, we take the same 
strategy as to obtain DBs but with a short lattice of 200 

Fig. 1. The phonon dispersions for Model I (a) and Model II (b), 
respectively.

Fig. 2. The DBs profiles after long time absorption for Model I with γ 
= 0; γ = 0.25 and γ = 0.4, respectively.

Fig. 3. The DBs profiles after long time absorption for Model II with 
γ = 0.5; γ = 0.34 and γ = 0.28, respectively.

Fig. 4. The divergence exponent α of heat conduction depends on the 
controlled parameter γ for Model I (a) and Model II (b), respectively.
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particles instead for facilitating the computation. After all of 
the DBs are emerging we then anlysize their P(ω). The final 
results are obtained by taking 100 instances of simulation 
with different initial conditions for the average.

The main results are shown in Fig. 5 and Fig. 6, from which, 
though we can clearly identify that in both models there is a 
γ-dependent manner of DBs power spectra information; the 
details are different: (i) in Model I, the DB frequencies are 
mainly outside the linear phonon band [ω > 2, see Fig. 5 (a) 
and (c)], however, at γtr = 0.25 a significant portion of the 
DB frequencies appearing inside the linear phonon band can 
be seen [ω < 2, see the inset of Fig. 5 (b)]; (ii) for Model II, 
as  γ  decreases from 1 to 0, we can find a transition from 
optical DBs [with frequencies above the optical phonons 
frequency, see Fig. 6(a)-(b)] to gap DBs [with frequencies 
lying in the gap between acoustic and optical phonons, 

see Fig. 6(e)]. Interestingly, there are two kinds of gap DBs 
with the frequencies slightly above the acoustic phonons, or 
slightly below the optical phonons. In particular, γ = 0.25 is 
a turning point, at which the two kinds of gap DBs have close 
spectrum strength.

Given the above DBs frequency details, it is then natural 
to conjecture that, DBs can be mainly classified into two 
categories, i.e., the extra-band ones and the intra-band ones, 
according to whether their frequencies are within the linear 
phonons band. The effects of the extra-band DBs may mainly 
be localizing the system energies; however, the intraband DBs 
can be scattering with phonons since they have frequencies 
lying in the phonons band. With these two different 
mechanisms in mind, we then further define 
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[P0(ω) and P(ω) are the power spectra of the initial thermal 
fluctuations and that after the absorption], the ratio of the 
residual energy after the absorption to the initial energy, to 
measure the localization of energy induced by DBs for Model 
II. Our results of ε(γ) are presented in Fig. 5(d) and Fig. 6(f). 
From the Figs. 5-6 and compared with the previous results 
of Fig. 4, we can clearly recognize a positive correlation 
between ε(γ) and α(γ), suggesting that the DBs properties 
should be related to heat transport. We thus suggest the 
following underlying pictures for the relationship: (i) in 
Model I, the effects are mainly caused by intra-band DBs, 
then suppose the scattering between phonons and the intra-
band DBs can be described by ε(γ), so a stronger (weaker) 
scattering will finally limit (facilitate) the heat transport in 
the thermodynamic limit, which supports the behavior of 
α(γ); (ii) for Model II, there are only extra-band DBs, then 
it can be expected that a smaller (larger) ε will lead to less 
(more) energy localization, finally facilitate (limit) heat 
transport in the thermodynamical limit, hence supporting 
the results of α(γ). It is worth noting that from Figs. 4-6, the 
heat transport and DBs simulation results are indeed in accod 
with our explanations, thus supporting that DBs should have 
their effects on heat transport in crystals. 

5. Conclusions

In summary, we have briefly described our recent results 
on how DBs are related to heat transport in crystals. We 
have numerically demonstrated that DBs can exist at finite 
temperature in the two focused 1D anharmonic lattices with 
very peculiar phonon dispersions.  Induced by the different 
dispersions along with nonlinearity, we are able to identify 
two different types of DBs in each system, i.e., the intra-band 
and extra-band ones; and we conjecture that their roles in 
heat transport may be different, i.e., the intra-band DBs can 
be scattering with phonons, while the extra-band DBs will 
mainly localize energy. With this conjecture we have showed 
that the quite unusual heat transport behaviors observed in 

Fig. 5. The power spectrum of DBs in the case of Model I for (a) γ 
= 0; (b) γ = 0.25 and (c) γ = 0.4, respectively. The inset in (b) is a 
zoom for the boxed intraband components (ω ≤ 2). (d) The energy 
portion ε of the DBs within the phonon band. The vertical dashed 
line indicates the turning point of γtr ≈ 0.25.

Fig. 6. The power spectrum of DBs in the case of Model II for (a) γ = 1; 
(b) γ = 0.5; (c) γ = 0.33; (d) γ = 0.25 and (e) γ = 0.2, respectively. 
The shaded area indicates the gap of the linear spectra between the 
acoustic and optical branches for each γ (f) The energy ratio ε of the 
DBs to the intital energy without absorption. The vertical dashed 
line indicates the turning point of γtr ≈ 0.25.
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these systems can be well understood. The reported results 
here apparently provide evidences that DBs can contribute 
to heat transport in crystals.
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