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The study of three-dimensional localized solutions of the nonlinear Klein-Gordon equation was conducted. The article 
describes new features of these solutions that distinguish them from other solutions. The consequences of such properties, 
which can be experimentally verified, were studied. The case where the Klein-Gordon equation is non-linear while solution 
amplitude tends to zero leads to the localization of solutions in a spherically symmetric case. The breather-like spherically 
symmetric solutions show the constancy of the frequency of the fast oscillation mode and are the three-dimensional objects. 
Such Lorentz-invariant breather-like solutions while moving are spatially modulated in the direction of motion similar to the 
de Broglie wave. For these solutions we a soliton interference pattern was considered that complements conventional Young’s 
corpuscular and wave interference patterns on two slits. The experiment scheme to test such soliton interference pattern was 
created. Since such oscillating patterns tend to be localized, as a result of collision of such two objects, they can merge in one 
object. Due to the spatial modulation of the colliding objects, the motion direction of the resulting object will depend on the 
directions of the colliding objects, on their phase and oscillation frequency. When taking into account the localization of such 
oscillating objects, the interference pattern will be significantly different from the linear extended waves interference pattern. 
The characteristic feature of soliton interference is in the disappearance of the interference pattern on the screen when the 
distance between the slits is bigger than the value determined by the characteristic dimensions of the soliton.
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1. Introduction

Nonlinear wave equations, for example, Klein-Gordon non-
linear differential equation, are very important for many 
areas of physics, including hydrodynamics, condensed 
matter physics, field theory, etc [1, 2]. The most studied are 
(1 + 1)- and the (2 + 1)-dimensional models [2-4]. These 
equations can be easily generalized for higher-dimensional 
spaces, for example, in the case of the spherical symmetry 
one has:
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Stable solutions of these equations could be interpreted 
as the classical models of finite size particles. From this point 
of view, three-dimensional space-time equations are most 
interesting. The case where the Klein-Gordon equation is 
non-linear, for example, of the form

/ ,+ + − = m n
xx yy zz ttu u u u u 	 (2)

while solution amplitude tends to zero, leads to the solutions 
localization in a spherically symmetric case.

These solutions for confining models were considered, for 
instance, in [5, 6]. These solutions represent non-spreading 
three-dimensional oscillating solutions, refer to the Fig.  1. 
The article describes new features of these solutions that 
distinguish them from other solutions. The consequences of 
such properties, which can be experimentally verified, were 
studied.

2. On the possible interference of 
oscillating localized solutions

The breather-like spherically symmetric solutions, for 
example, equations (2) show the constancy of the oscillations 
fast mode frequency and are three-dimensional objects. The 
presence of these properties opens up new possibilities in the 
interaction of such objects, for instance when they collide 
at different angles and while considering wave interference 
phenomenon. Such Lorentz-invariance breather-like 
solutions will undergo spatial modulation while moving. 
Indeed, let us suppose that there is some localized three-
dimensional breather-like solution with a preserved rapid 
fluctuations frequency. Then the solution 

1
( , ') ( , ')cos( ')ω

=
= ∑

N

i i
i

u r t a r t t 	 (3)

will be associated with some harmonic function cos(ωj 
t'), where ωj  — the rapid oscillations mode frequency and 
coefficient aj is substantially bigger than others.

In Lorentz transformation:
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The function cos(ωt') acquire the form
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and the oscillating solution will be spatially modulated in 
the movement as a de Broglie wave [7]. An example of such 
transformation is a moving breather in the sine-Gordon 
equation of the form [1,2]:
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which at motion with the speed ν spatially modulates as 
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Spatial modulation of such constantly localized three-
dimensional solutions should manifest itself in waves 
interference phenomena – interference. This can be a 
very interesting situation of interference, similar to the 
hydrodynamic objects interference – the so-called walkers 
in Coude and Fort experiments [8]. Since such oscillating 
generations tend to be localized, at collision of such two 
objects, they can also be localized in one state. Indeed, let’s 
consider, for example, the equation 
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where m, n  — are odd positive integers, while m < n. For 
ν = ur, we obtain:
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This equation shows that the field of the form r(n-m)/n will 
prevent spreading of the localized solution. It is natural to 
assume that at the collision of such two solutions they will 
localize in one state. Due to the spatial modulation of the 
colliding states, the motion direction of the resulting state 
will depend on the directions of the colliding states, on their 
phase and frequency oscillations. When taking into account 
the localization of such oscillating states, the interference 
pattern will be significantly different from the unlimited 
waves linear interference pattern.

Let’s consider a simple modification of the Jung 
experiment scheme clearly separating these two cases. Fig. 2 
shows such a scheme. The localized solutions pass through 
the diaphragm with two slits and come on the screen. L — is 
the distance from the diaphragm with two slits to the screen, 
d — is the distance between the slits, A — is the characteristic 
dimensions of soliton-like state (SS) . Here, using the term 
«soliton-like», we mean only permanent localization of 
oscillatory states, and not their properties during collisions. 
While spreading at two slits initial localized state (or SS1), 
passing through two holes, splits into two localized SS2 
and SS3. Then, SS2 and SS3 gather again in SS4, similar to 
SS1. SS4 directions of motion distribution can produce an 
interference pattern. Wave pattern of interference is provided 
by interaction of SS2 and SS3. It is natural to assume that the 
proportional increase in size of L, d at d >> A, any interference 
pattern in «soliton» model must disappear.

Indeed, when SS1 is localized, it may pass simultaneously 
through two holes, only if the distance between them is not 
much bigger than its dimensions. In the case of conventional 
non-localized waves interference, where:

λ / d = Δx / L	 (9)

L, d proportional increase in size should not lead to a change 
in the interference pattern, while maintaining the coherence 
length and width. Thus, the cases of normal and soliton 
interference can be clearly divided. We emphasize once again 
that the soliton type of interference is possible, according 
to the authors, only for solutions which have the property 
of localization, such as equations solutions of the form (7). 
The numerical experiments to verify this model is quite 
time-consuming, as it is associated with three-dimensional 
calculations. Soliton interference model may also manifest 
itself in some real phenomena. Although soliton model 
particles are unorthodox hypotheses, as a real experiment 
to verify the soliton interference patterns one can offer a 
Tonomura experiment on electrons interference with a 
very large diameter of obstacles. Assuming endless length 
of wave coherence probability amplitude, conducting such 
an experiment seems superfluous. However, in reality, as we 
know, the double-slit experiment with such parameters has 
not been carried out.

3. Conclusions 

In conclusion, we note that although the issue of particles 
viewed as solitons is not enough studied now and is very 
controversial, the soliton type of interference may occur in 
any events. The characteristic feature of soliton interference 
is in the disappearance of the interference pattern on the 
screen when the distance between the slits is larger than 
the value determined by the characteristic dimensions of 
the soliton. In conventional interference the proportional 
increase of L, d parameters does not affect it. Therefore, 
the proposed experiment scheme to verify the existence of 
such interference deserves, in the authors opinion, further 
investigation.

Fig. 1. Numerical solution of the equation (2) for m = 3, n = 7.

Fig. 2. Two-slit experiment scheme to test the soliton interference 
pattern.
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