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Discrete breathers are spatially localized, time periodic oscillations. Th ey appear in discrete nonlinear systems, particularly in 
the quasi-linear molecular chains. An interesting example of such objects is the Peyrard-Bishop model of deoxyribonucleic 
acid molecule (DNA) and its modifi cations. In the models, discrete breathers precede denaturation bubbles (the regions of 
separation of complementary chains in the course of the DNA melting). Under certain conditions, such localized oscillations 
can move and they are known as mobile breathers. Th ere is a systematic method for fi nding solutions of nonlinear discrete 
systems in the form of approximate mobile breathers. Approximate mobile breathers have quite a long lifetime, but they move 
slowly losing energy due to the emission of phonons. However, in nonlinear discrete lattices numerical studies show the 
existence of so-called numerically exact mobile breathers, moving without loss of energy and changing its shape. Th e present 
article deals with these numerically exact mobile breathers in the Peyrard-Bishop model of DNA. A method for fi nding 
numerically exact mobile breather is considered. Aft er several oscillation periods, these solutions repeat the same profi le but 
displaced by several lattice sites. Numerically exact mobile breather can be obtained only at certain values of the interparticle 
interaction describing stacking interaction of DNA.
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1. Introduction

DNA is an interesting object for studies of mobile breathers 
(MBs). Th e MBs are responsible for the energy transfer in 
molecular systems and can be interpreted as precursors of 
replication and transcription in the DNA molecule [1].

Most articles deal with MB’s solutions obtained by adding 
small perturbations to velocity part of the stationary discrete 
breathers. Th ese solutions have quite a long lifetime, but they 
move slowly losing energy due to the emission of phonons 
and fi nally stay pinned to the lattice. However, in nonlinear 
discrete lattices numerical studies show the existence of 
numerically exact MBs, moving without loss of energy and 
changing its shape [2-5]. So called (p,q)-resonant numerically 
exact MBs aft er qTb periods (Tb = 2π / ωb where ωb – internal 
frequency of MB) repeat the same profi le but displaced by 
p lattice sites. Numerically exact MBs are the exact solution 
of model’s equation of motions. So it is interesting to study 
such solutions in the framework of DNA model. Th e present 
article deals with these numerically exact MBs in Peyrard-
Bishop model of DNA [6].

2. Model

Th e Peyrard-Bishop model considers that the DNA molecule 
consists of two polynucleotide chains and represents two 
chains of disks connected with each other by longitudinal 
and transverse springs (Fig. 1).

Th e interaction between the neighboring sites of one 
chain is described by the harmonic potential k(un – un–1)

2/2 
for the upper chain and k(νn – νn–1)

2/2 for the lower chain, 

respectively, where k is the interaction constant along the 
chain, un and νn are displacements of nucleotides having mass 
m from the equilibrium position in directions indicated by 
arrows. Th e interaction constant k and the nucleotide mass 
m in the PB model remain unchanged along the DNA chain. 
Th e interaction between sites of diff erent chains is modeled 
by the Morse potential imitating hydrogen bonds connecting 
bases of complementary pairs, where D is the dissociation 
energy of polynucleotide chains and a is the inverse length 
(the spatial scale of the potential).

Th e Hamiltonian of the Peyrard-Bishop model has the 
form: 
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Here the fi rst term describe the kinetic energy of n-th 
base pairs. Th e second term describes nearest-neighbor-
range stacking interactions. Th e third term in Hamiltonian is 
the Morse potential, which represents the hydrogen bonding 
of complementary base pair. Let us make the substitution of 

Fig. 1. Th e Peyrard-Bishop model of DNA.
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variables xn = (un + νn)/√2 and yn = (un – νn)/√2 in Hamiltonian. 
The coordinate xn describes positions of the center of mass for 
the pair of bases, and the coordinate yn describes stretching of 
hydrogen bonds of the bases:
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where we introduce dimensionless time 2 /τ = t Da m  and 
displacement un = ayn and employ original variables u → y 
and τ → t. S = k / (Da2) is the dimensionless parameter that 
characterizes the coupling of the oscillators.

The equations of motion corresponding to dimensionless 
Hamiltonian is:
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Let us focus our attention on a solution of the nonlinear 
equation of motions for yn:
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Different values of the parameters are used in different 
works D = 0.33 eV, a = 1.8 Å–1, k = 0.003 eV/Å2 [6], D = 0.1 eV, 
a = 2 Å–1, k = 1.5 eV/Å2 [7]. The parameter of the stacking 
interaction is varied in a wide range (k = 0.003-4.8 eV/Å2 [8]). 
In this case, dimensionless parameter S ranges from 0.002 to 
3.75.

3. Methodology

There are two stages to obtaining a numerically exact MB's 
solutions. Firstly, it is finding the good initial conditions for 
Newton method and secondly using Newton method with 
these initial conditions. 

Let us consider the first stage of the method: finding the 
initial conditions for numerically exact MB moving with 
velocity υb = p/(qTb ):

1) For a given value of the parameter S and ωb stationary 
discrete breather solution yn

st (0) is obtained [9,10];
2) velocity part of this discrete breather is calculated as 

( )1 1(0) (0) (0) / 2µ + −= − −st st
n n ny y y , where μ is small parameter;

3) the equations of motion is integrated until time t = qTb;
4) The norm of difference between position of the MB 

and DB solution shifted by p sites is calculated;
5) Parameter μ  =  μmin, that minimize norm used as 

perturbation parameter for initial condition for Newton 
method for finding numerically exact MBs.

4. Results

In this section we introduce obtained numerically exact 
stable MB's solution for values ωb = 1.8, S = 0.6 numerically 
exact unstable MB's solution for value S  =  0.44. Fig. 2 

illustrates the initial position profile for the solution, and 
Fig. 3 shows the initial velocity profile of the solution. The 
velocity of the solution is νb = 1/(12Tb ).

Specific feature of these solutions is the presence of 
extended small oscillating tails (Fig. 4,5).

If we introduce local energy at the n-th site of lattice:
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Fig. 2. The initial positions profile of (1,12)-resonant MB.

Fig. 3. The initial velocity profile of (1,12)-resonant MB.

Fig. 4. The tails of initial position profile of (1,12)-resonant MB.

Fig. 5. The tails of initial velocity profile of (1,12)-resonant MB.
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then velocity of numerically exact MB may be calculated as:
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where Δt is the short period of time. The velocity of numerically 
exact MB oscillate about value ν = 1/(12Tb) ≈ 0.024 as shown 
in the Fig. 6.

The second moment of the energy distribution σE is 
shown in the Fig. 7:
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It can be seen that the numerically exact mobile breathers, 
moving without loss of energy and changing its shape. The 
total MB's energy was conserved and was approximately 
equal to E ≈ 0.94.

Floquet theory can be used to study the linear stability 
of the obtained solutions. Floquet multipliers λ for the stable 
(1,12)-resonant MB shown in Fig. 8. 

Stable numerically exact MB has a long lifetime and move 
without radiation Fig.9.

Numerically exact MB can be obtained only at certain 
values of the interparticle interaction S above some minimal 

value. For S  <  0.44 the solutions cannot be obtained. For 
0.44 < S < 0.5 Newton method has very poor convergence, 
obtained solutions is unstable and have large amplitude tails 
(Fig. 10, 11).

Such unstable numerically exact MBs (if instability is not 
so strong) can have quite a lifetime, but finally pinned by 
lattice and stops Fig 12.

Fig. 6. Velocity evolution of the (1,12)-resonant MB.

Fig. 8. Floquet eigenvalues of (1,12)-resonant MB.

Fig. 9. Time evolution of the of (1,12)-resonant MB in a periodic 
lattice.

Fig. 7. The second moment of the energy distribution σE .

Fig. 10. The initial positions profile of (1,7)-resonant MB.

Fig. 11. Floquet eigenvalues of (1,7)-resonant MB.

Fig. 12. Time evolution of the of (1,7)-resonant MB in a periodic 
lattice.
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5. Conclusion

In our work numerically exact mobile breathers solutions 
of equations of motions of Peyrard-Bishop model of DNA 
are obtained. Such mobile breathers can move along the 
lattice without loss of energy and change in its shape but for 
existence of these solutions presence of small oscillating tails 
is needed. When coupling constant S is small the solutions 
cannot be obtained. When coupling constant S grow, highly 
unstable numerically exact breathers appear and with further 
growth of the coupling constant the solutions become more 
stable. It can be expected that the last conclusion is valid for 
models with other nonlinear interaction potentials.
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