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In this Letter we describe analytically and simulate numerically the softening of flexural surface acoustic waves, localized in
the plane of few-layer graphene embedded in soft matrix of low-density polyethylene. The softening of surface acoustic wave
is triggered by the compressive strain in the matrix, which results in compressive surface stress in the few-layer graphene.
Softening of the flexural surface acoustic wave leads to spatially periodic static bending deformation (modulation) of the
embedded nanolayer with the definite wave number. Few-layer graphene with different numbers of graphene monolayers is
considered. We describe the different models of interlayer bonding of graphene monolayers in a few-layer graphene, which
correspond to the weak and strong interlayer bonding. The considered models give substantially different scaling of the wave
number of periodic bending deformation and of the threshold compressive strain in the matrix as functions of the number
of graphene monolayers in the few-layer graphene. Both the wave number of periodic bending deformation and the values
of the threshold compressive surface stress in the few-layer graphene and of the compressive strain in the matrix are very
well confirmed by the numerical simulations. Bending instability of few-layer graphene can be used for the study of bending
stiffness and two-dimensional Young modulus of the graphene nanolayers, embedded in a soft matrix.
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VI3rn6HasA HeyCTOIMYMBOCTH MHOTOCIOITHOTO rpadeHa
B MaTpuie u3 gepopMupoBaHHOrO NoIUMepa
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*Poccuticknit skoHoMmdecknit yHuBepcutet uMenn I B. ITnexanoBa, CTpeMAHHDI 1ep., 36, Mocksa, 117997, Poccusa
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JlaHO aHaMUTHMYeCKOe ONVICaHMe U IPOBEIEHO YMC/ICHHOe MOJITIMPOBaHIe CMATYeHNA U3TMOHBIX IIOBEPXHOCTHBIX aKyCTH-
YeCKIX BOJIH, JIOKa/IM30BaHHBIX Ha IIOCKOCTY MHOTOCIIOTHOTO rpad)eHa, BCTPOGHHOTO B MATKYI0 MaTpULy U3 ITOIMITIICHA
HY3KO I1oTHOCTH. [ToKasaHo, 4TO CMArYeHNe HOBEPXHOCTHON aKyCTUYeCKON BOTHBI BBI3BaHO fedopMariyieli CKaTys B Ma-
Tpulie, KOTOpas MPUBOANUT K KOMIIPECCUOHHOMY IIOBEPXHOCTHOMY HAIIPsPKEHNUIO B MHOTOC/IONHOM rpadere. CMArdeHue us-
I'MOHOI IIOBEPXHOCTHON aKyCTUYECKOJT BOIHBI IPUBOANT K IIPOCTPAHCTBEHHO-IIEPUOANIECKOIT ehopMaLiuy CTaTUIeCKOTO
usruba (MOEy/IALMY) BCTPOEHHOIO HAHOC/IOA C OIPeJie/IeHHBIM BOIHOBBIM 4MC/IOM. B paboTe paccMOTpeH MHOTOC/IONHBIN
rpadeH ¢ pasHbIM 4MCIOM c1oeB. ONUcaHbl pas/IyHble MOJIE/ MeXKCTIOEBOTO B3aMMOMEICTBIA Ipah)eHOBBIX MOHOC/IOEB
B MHOTOC/IONTHOM I'padeHe, KOTOpbIe COOTBETCTBYIOT C/IA0BIM VI CHJIBHBIM MEXKCIOEBBIM B3aMOJECTBUAM. PaccMOTpeHHbIe
MOJIe/IM JAIOT CYIeCTBEHHO Pas3/IyHble 3aBUCYMOCTY BOTHOBOTO YYIC/Ia IIEPUOANYECKOIL M3TMOHOI e opMaly 11 HOPOro-
BOI1 feopMaLVIM CKATUA B MaTpHlie OT YMC/Ia CTIOEB B MHOTOC/IONHOM rpadeHe. HncmeHHOEe MOfieTMpOBaHye O4eHb XOPOILIO
HOATBEPKIaeT KaK BOJTHOBOE YICIIO IIepMOITIecKoll edopMaruy 13ruba, Tak 1 HOpOroBoe KOMIPECCYOHHOE IIOBEPXHOCT-
HOe HaIpsDKeHNe B MHOTOC/IONHOM rpadeHe U HOpOroBylo gedopManuio okaTis B Marpulie. VsrubHas HeyCTONYMBOCTD
MHOTOCJIONHOTO I'padeHa MOXKeT OBbITh MCIIONIb30BaHa JIA M3Y4eHMs VSTUMOHON XeCTKOCTU U AByMepHoro Mopyna IOura
rpadeHOBBIX HAHOC/IOEB, BCTPOECHHBIX B MATKYIO MaTpUILY.

KnroueBbie cC1OBa: MHOTOC/TOTHBIN rpa(beH, n3TMObHAA JKECTKOCTb, )IByMeprIIZ MOAYIIb Ownra, JIHa BOTHbI MO Y/IATINN nsruba.
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1. Introduction

Outstanding mechanical properties of graphene have
made it very attractive for the construction of nano- and
electro-mechanical devices and in composite materials [1].
Elastic properties of graphene have been measured using
nanoindentation [2] and pressurization [3] techniques,
and the Young modulus E, of two-dimensional (2D) elastic
layer was found to be extremely high, E =pv?~22 eV/A?,
where v,=21.6 km/s is longitudinal sound velocity and
p,=7.6x 107 kg/m? is mass density per unit surface area [4].
Nevertheless, the mechanical interplay between mono- and
few-layer graphene and other materials is not well studied,
although it is crucial for the use of graphene in composite
[1], flexible, and strain-engineered [5] materials. Low value
of graphene bending stiffness allows for easy formation of
secondary structures including wrinkles, scrolls and folds
[6-10].

In Ref. [11] it was predicted the softening of the flexural
surface acoustic wave, localized at the graphene monolayer,
caused by negative (compressive) surface stress g and
finite bending stiffness D_ of the 2D elastic layer. Softening
of the flexural surface acoustic wave results in periodic
static bending deformation (modulation) of the interface
layer with the definite wave number k , of the monolayer,
embedded in a strained matrix. This effect can be triggered,
e.g., by the compression of the solid along the x axis, which
results in the compressive strain and negative surface stress
g in the embedded graphene monolayer. The softening of
the flexural surface acoustic wave in a sandwich-like elastic
structure presents a dynamical counterpart of purely static
phenomenon of the buckling of the plate sandwiched in
the compressively strained matrix (see, e.g., Ref. [12]). The
possibility of the softening of surface acoustic Rayleigh and
interface waves, triggered by negative surface stress, was
noted in [13,14,15].

In this Letter we describe the bending instability of the
few-layer graphene (FLG) embedded in a strained polymer
matrix. The threshold matrix strain and bending modulation
wavelength are determined by the bending stiffness and
Young modulus of the 2D elastic layer, and by the shear
modulus and ratio between transverse and longitudinal
bulk velocities in the matrix [11]. The main difference from
the monolayer graphene is the dependence of the bending
stiffness and Young modulus of the 2D elastic layer on the
number of carbon layers in or on effective thickness of the
few-layer graphene. In the case of continuous macroscopic
layer, the bending stiffness grows with the layer thickness / as
D ~h’ [16,17], while E_~h, which corresponds to the strong
interlayer bonding in the layer. Another model of FLG is based
on the fact that the bonding between the carbon monolayers
is provided by relatively weak van der Waals interaction while
the bending stiffness and 2D Young modulus of the elastic
nanolayer are determined by more strong covalent bonding
and three-body Keating-type potentials [18,19,20]. In this
model of weak interlayer bonding in FLG, both the bending
stiffness and 2D Young modulus of the elastic nanolayer
are considered to be given by the number of graphene
monolayers n, D™”=nD , E"" =nE, see, e.g., [21].

2. Model

To describe the softening of the flexural surface acoustic
wave in the plane of FLG, triggered by negative (compressive)
surface stress, we start with the dispersion equation for the
surface wave with the quasi-transverse polarization, normal
to the nanolayer plane, see [11]:

1
(4, +9,)9,C \Cys = E(ps - gxxkxz - D.vkx4)(cllql +Cos)s (1

where__in 1sotr0p1c olymer solid one has
q kz—a) /vl, kl-a’ /v, v =,C,/p and

=C/p are Veloc1tles of longltudlnal and transverse
elastic waves in polymer matrix, C, =A+2u and C_=u are
the elastic moduli, with A and y being the Lamé coefficients
of polymer solid.

The value of the negative surface stress g_=—|g_| and the
wavenumber k  at which the softening occurs can be found
from the following two conditions,
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In the assumption of isotropy of the elastic matrix, the
required parameters are determined from Eqgs. (1) and (2)
and are given by the bulk modulus y, bending stiffness D_of
the 2D elastic interface layer and the ratio of longitudinal and
transverse elastic waves in the matrix V,,, =v,/v,:
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where o is Poisson’s ratio in the polymer matrix.
Since g _=E¢_, where ¢_ is the in-plane strain of the
matrix, from Eq. (4) we get:
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For the monolayer graphene, we take bending stiffness
D =1.1 eV [4]. For the low-density polyethylene, we take
#=0.2 GPa, v,=0.466 km/s, v,=2.400 km/s, and V_=5.15
[22]. We find from Egs. (3) and (5) that the monolayer of
graphene embedded in the matrix of low-density polyethylene
undergoes periodic static bending deformation (modulation)
with the wavelength A =2n/k ~48.4 A, triggered by the
compressive strain in the matrix as small as ¢ _=-2.5x107.
The bending modulation wavelength A is about 34 times
larger than the carbon-carbon bond length a*=1.42 A,
that justifies the above description in the long-wavelength
approximation.

3. Results and discussion

In Fig. 1 we present the change of the dispersion of surface
acoustic waves, propagating along the x axis in the FLG
embedded in soft matrix of low-density polyethylene,
triggered by the compressive strain in the matrix along the
x axis. Frequency is measured in units of v /a, the wave
vector k_is measured in units of 1/a, where v,=0.466 km/s,
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Fig. 1. Dispersion of flexural surface acoustic wave, propagating
along the x axis in the few-layer graphene embedded in a matrix of
low-density polyethylene, triggered by the compressive strain in the
polyethylene along the x axis. Frequency is measured in units of v,/ a,
wave vector k is measured in units of 1/a, where v,=0.466 km/ s,
a=p /p=8.26 “A for the polyethylene with density p 920 kg/m’.
Lines 1, 2, and 3 correspond to the number of monolayers n in FLG
n=1,2,3, respectively. Compressive surface stress in the few-layer
graphene is given by Eq. (4).

0.4

a=p/p=826 A for the polyethylene with density
p=920 kg/m’ [22]. In these simulations, we have assumed
that D”W=nD, E®=nE, and g”=ng , with n=1,2,3.
Both the wave numbers of periodic bending deformation,
k’=1.07/a, k?=0.849/a, k?=0.742/a, and the value
of the threshold negative surface stresses g _, given by
Egs. (3) and (4), are very well confirmed by the numerical
simulations. In this model of weak interlayer bonding in
FLG, the wave number of periodic bending deformation and
the threshold compressive strain in the matrix decrease with
the number of graphene layers in FLG as k" =1.07/(an'"”)
and e =-2.5x 107/ n*", respectively, see Egs. (3) and (5).

On the other hand, in the case of strong interlayer
bonding in FLG the bending stiffness, effective 2D Young
modulus and surface mass density of the layer of hexagonal
crystal with thickness h with free surfaces in xy plane will be
the following, see Refs. [23,24]:

n C/
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o, =hp. (8)

As follows from Egs. (3), (5)-(7), in this case the
threshold compressive strain in the matrix does not depend
on h,
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while the wavenumber at which the softening occurs decays
with has k joc1/h:
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In the considered case of the layer of graphite embedded
in a matrix of polyethylene, which corresponds to the case of
the layer of stiff hexagonal crystal embedded in a compliant
soft matrix, the condition k h<<1, which is assumed in
the model of layer bending instability, is satisfied due to
the conditions u<<C  and C}<«<C, C,, see Eq. (10). Such
substantial difference between the scaling of the control
parameters k¢’ and " of the bending instability of FLG as
functions of n, given by Egs. (3) - (5) in the different models
of interlayer bonding in FLG, can be used for the study of
bending stiffness and 2D Young modulus of the embedded
graphene nanolayers.

Inconclusion, wehaveanalyzed and numerically simulated
the softening of flexural surface acoustic waves, localized in
the plane of few-layer graphene embedded in soft matrix
of low-density polyethylene, triggered by the compressive
strain in the matrix. Softening of the flexural surface acoustic
wave results in spatially periodic static bending deformation
(modulation) of the embedded nanolayer with the definite
wave number k_. We have considered FLG consisting of one,
two, and three monolayers of graphene, and have described
the different models of interlayer bonding of graphene
monolayers in a few-layer graphene, which correspond to the
weak and strong interlayer bonding. Both the wave number
of periodic bending deformation k_, and the value of the
threshold negative surface stress g _, given by Eqgs. (3) and (4),
are very well confirmed by the numerical simulations. The
bending instability of FLG can be used for the study of
bending stiffness and 2D Young modulus of the graphene
nanolayers, embedded in a strained compliant matrix.
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