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A new scalable and efficient implementation of the mesoscopic distinct element method for massively parallel numerical
simulations of carbon nanotube systems is introduced. Carbon nanotubes are represented as chains of rigid bodies, linked by
elastic bonds and dispersive van der Waals (vdW) forces. The enhanced vector model formalism of the elastic bond between
rigid bodies, developed recently, is employed here to capture the elastic deformation of nanotubes. Dispersive interactions
between the neighboring nanotubes are described with the coarse-grained vdW potential. Time integration is performed using
a velocity Verlet integration scheme with tunable damping in order to describe the energy dissipation to the implicit degrees
of freedom. Due to the scalable message passing interface (MPI) parallelization, enabled by rigid particle dynamics module
(PE) of the waLBerla multiphysics framework, our method is capable of modeling large assemblies of carbon nanotubes.
This advance enables us to move closer to the length and time scales required to extract representative mechanics of carbon
nanotube materials. The promising scalability of the new implementation is probed in two examples of self-assembly of ultra-
thin carbon nanotube films and carbon nanotube buckypapers, where formation of hierarchical networks of carbon nanotube
bundles, storing both elastic and vdW adhesion energies is observed. The relaxation of one cubic micrometer of buckypaper
illustrates the code scalability.
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B pabote mpeptaraerca HoBas, MacimTabupyemas U 3¢ ¢deKTNBHas peamn3anua Me30MaclITabHOTO MeTOfa AUCKPeTHOrO
9JIeMeHTa IJI1 MacCUBHO-IIapa/UIe/IbHOIO MOJIE/IIPOBAHYIA CUCTEM M3 YITIEPOSHBIX HAHOTPYOOK. YITIepofHble HAaHOTPYOKU
HpeHCTaBTIeHbI B BIJIE€ IEIIOYEK BSaMMOHeI/UICTByIOHH/IX TBepﬂbIX TeJ1, CBA3aHHbBIX pryFI/IMI/I CBA3AMU U BSaI/IMOIIeIZCTByIOHU/IX
Yyepe3 AVCIepCHOHHBIe cyIbl BaH fiep Baanbca. [l14 onucanus ynpyrux gedopManuii yIraepogHbIX HAHOTPYyOOK IIpUMeHAeT-
s HelaBHO pa3paboTaHHas yCOBEPIICHCTBOBAHHAS BEKTOPHAsA MOZE/b YIIPYTroll cBA3N. [lycrepcoHHble B3aIMOAEIICTBYA
Me)K,[[y COCeIHMMU HaHOpr6KaMI/I OIINCBIBAXOTCA HpI/I IIOMOIIN Opr6HeHHOI‘O IIOoTeHIMajaa BaH I[ep Baanbca. MHTCFPI/I-
pOBaHI/Ie 110 BpeMeHI/I OCYIHCCTBHHGTCH HpI/I IIOMOIIIN aJ'II‘OpI/[TMa Bepne, C H€60)’II)IHI/IM HeMH(i)I/IpOBaHI/IeM OIA OIIMICAaHNUA
Ilepexofia SHepIUU B MUKPOCKOIIMYECKYe CTelleHy cBoOonbl. brarogapsa BricokoMacmtabupyemoit MPI napaytennsanum,
obecrieunBaemoit cpenort waL.Berla/PE pist MopenupoBaHust IBV>KEHMSI CCTEMBI TBEP/IBIX TeJl, HAlll METOI CIIOCOOEH Mofie-
TH/IpOBaTI) BeCbMa 6OJ'II)IHI/Ie MaCCHUBBI yrnepouﬂmx HaHOpr6OK. B pesyanaTe y;[aeTc;I HpI/I6)'[I/[31/ITI)C}I K HpOCTpaHCTBeHHbIM
n BpeMeHHbIM MaCHITa6aM, H€O6XOI[I/IMI)IM T MO,I[eJ'II/[pOBaHI/IH MaTepI/IaJ'IOB nus3 YI‘J'IepOIIHbIX HaHOTPY6OK. MaCHITa6I/Ipye-
MOCTb IIpeyIaraeMoro IoAxofa IpogeMOHCTPUPOBaHa Ha IIpUMepax caMOCOOPKY CBEPXTOHKOL IVIEHKN U OyMary u3 yrie-
POIHBIX HAHOTPYOOK, B KOTOPBIX HaO/II0fIa/10Ch GOPMIPOBaHIIE MepapXIYecKUX ceTell HAHOTPYOOK, 3aIlacaiolyiX SHEepruio
ynpyroii gedpopmManuu u BaH-Jiep-BaanabcoBa IPWINIIAHKA. B 4acTHOCTH, YAaIOCh IPOBECTY MOAEIMPOBaHNe PelaKcaln

OOHOIO KY6I/I‘~I€CKOI‘O MUKpOMETpa 6yMaFI/I "3 YITIEpOAHDBIX HaHOpr6OK.

KnroueBbie cmoBa: yrinepogHble HaHOTpY6KI/I, METOJ AVICKPETHOTIO 3/IEMEHTA, ITapa/IyIe/IbHbIE€ BbIYMC/IEHNA, pacClli pe€HHaA BEKTOpHaA

MO[IEITb.

1. Introduction

Carbon nanotubes (CNTs) [1] and carbon nanotube
materials show great promise in a number of industrial
applications, including fine coatings, flexible electronics,
ultrastrong ropes and reinforcement fibers [2 - 4]. However,
intricate hierarchical structures of such materials, their
discontinuous behavior with non-trivial tribology, as well
as the prohibitively large sizes of representative volume
elements prevented straightforward theoretical prediction
of the mechanical, electrical and thermal properties of large
CNT assembles.

Understanding of the mesoscale behavior of such
materials can be improved via numerical simulations. While
microscopic simulation techniques, such as tight-binding
and molecular dynamics methods, were proved to be efficient
numerical tools for modeling individual nanotubes and
their interactions [5-8], the scalability of such techniques
is insufficient for modeling large numbers of long CNTs,
necessary for studying the mechanics of the representatively
large specimens of CNT materials. In order to address this
problem, a number of mesoscale models were suggested. The
simplest one, bead-spring model [9-11], utilizes the idea of
coarse-grained molecular dynamics, initially proposed for
modeling polymer chains. Within this modeling concept, a
chain of point masses — beads, represents a CNT interacting
via classic potentials, representing either coarse-grained
covalent bonding within a CNT, or dispersive interactions
between the neighboring CNTs. Such a model, in spite of its
obvious merits, has few fundamental limitations in a context
of CNT modeling. One of them is the absence of torsional
degrees of freedom leading to unrealistic behaviors of CNT
assemblies under certain loadings. In order to address this

problem, an essentially different coarse-graining concept was
suggested [12-16] basing on a representation of a thin fiber
(CNT) as a chain of rigid bodies, rather than point masses.
Such a model allows not only bending of individual fibers,
but their torsion as well. Such an extension enabled studies
of twisted ropes and bundles of CNTs [16]. This modeling
technique, known as mesoscopic distinct element method
(MDEM), established itself in the field as one of the most
efficient mesoscopic modeling tools, both computationally
inexpensive and physically justified. Until now, the remaining
obstacle on the route towardslarge-scale application of MDEM
was the absence of its scalable, parallel and freely available
implementation, since it was implemented only within a
commercial package PFC3D [17], limiting the simulations
with few hundred thousands rigid bodies and few millions of
van der Waals (vdW) contacts. In this work, we demonstrate
a fully functional, massively parallel implementation of
MDEM for modeling CNT systems, utilizing one of the most
advanced rigid body dynamic computational engines — rigid
particle dynamics module of the waLBerla multiphysics
framework [18].

In order to ensure the stability of large-scale simulations
of CNT assemblies, we use the recently developed enhanced
vector model (EVM) [19, 20] for the description of the
bonds between rigid CNT segments. Unlike previously
employed parallel bonds [21], EVM provides precise
energy conservation in zero-damping simulations, and can
be easily generalized to capture nonlinear effects and bond
fracture.

Enriched with the scalable parallelization and EVM
description of CNT elasticity, MDEM promises to become
the leading technique for modeling mesoscale mechanics of
CNT materials.
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2. Method

In this section, we describe the features of the new
implementation of MDEM. The core difference with the
previous implementation [13-15] is the usage of scalable
dynamic engine [18] and energy conserving elastic bonds
[19, 20]. For the purpose of completeness, we provide a brief
yet complete description of our model.

MDEM is a numerical technique for computing the
damped dynamics of a collection of interacting classical
particles. These particles are rigid bodies of arbitrary shape.
Although a number of primitive shapes is readily available
in the framework, here we utilize only rigid spheres with the
radius 7, and uniformly distributed mass m. The equations
of motion of a system of rigid particles are solved using an
explicit velocity Verlet finite difference algorithm. The forces
and moments on each interacting particle are derived from
contact models prescribed in advance. In the following, we
give a concise overview of these contact models and provide
their parameterization for a (10, 10) CNT (lattice numbers
define the radius of CNT). The representation of a CNT as
a chain of rigid segments relies on the following coarse-
graining procedure. An undeformed CNT is homogenized
into a cylindrical shell with finite thickness, which is then
partitioned into identical mass representative elements (REs)
of a CNT, each of finite length T (Fig. 1).

Each spherical particle represents a mass RE. In this
work we chose to partition a (10, 10) CNT with diameter
2r=13.56 A into mass REs with T'=2r_. This way, each mass
RE contains about 220 carbon atoms. Parameters m and I are
chosen to match mass and moment of inertia of a RE taken
with respect to the CNT axis. It follows that the spherical
particle has a radius r,= V25 *oyr- The spherical particles are
equispaced at a distance T apart along CNT axis.

The segments of neighboring CNTs interact via a vdW
contact model. The design of the vdW contact model is
based on the microscopic integration of vdW interactions
of individual atoms in the assumption of valid superposition
of vdW interactions. In this work, we utilize the simplest
model of vdW interactions — isotropic coarse-grained vdW
potential, obtained by microscopic integration of Lennard-
Jones potential for carbon, in the assumption of uniform
distribution of carbon atoms over cylindrical surfaces of
carbon nanotubes [12]. An isotropic vdW potential U and
the corresponding force F are given by

Elastic shell
approximation

Fig. 1. Illustration of the coarse-graining concept used in MDEM.

Elastic REs

4e A _ B ,D.2D.
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Here, D; =7, /1y, —2 is the dimensionless distance
between CNT surfaces, r, is intercenter distance between
interacting particles (here and below we use bold font for
vectors and regular font for their absolute values). For the
small and negative distances, corresponding to intersection
and touching of CNTs, generalized Lennard-Jones potential
is replaced with a linear potential exerting constant repulsive
force. In our simulations, for the normalized distances D> 6,
vdW interactions are neglected.

Table 1 gives parameterization of isotropic vdW
potential (1) used in this work.

Table 1. Parameters of isotropic van der Waals potential.

A B 14 B &, meV D,
0.0223 1.31 9.5 4 71.24 0.4

In the previous implementation of MDEM, the coarse-grained
covalent interactions within a CNT were represented with
the parallel bond model [13, 21]. Parallel bonds specify linear
relations between relative stretching, shearing, twisting and
bending of CNT segments, and the corresponding tension
and shear forces, as well as torsional and bending moments.
These relations were specified in a decoupled incremental
form, and the corresponding stiffnesses were derived from
Euler-Bernoulli beam theory [13]. However, this approach
performs poorly when it is necessary to study large strains
of CNTs, since it is unable to capture the coupling between
bending and twisting terms. This leads to significant non-
conservation of energy and necessity of using artificial local
damping, needed to stabilize numerical time integration. On
the other hand, it is hard to generalize parallel bond for the
case of nonlinear constitutive behavior, occurring at large
deformations of CNT. In order to bypass these limitations,
in the new implementation we have replaced parallel bonds
with more general and stable enhanced vector model (EVM)
of an elastic bond developed recently [19,20].

Spherical particles

5

]
i Tenr
—

EVM interfaces
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The EVM is based on a binding potential, describing the
behavior of an elastic bond linking two rigid bodies. The
formulation provides straightforward generalization on the
case of large strains and accounts for a bending-twisting
coupling. Consider two equal-sized spherical particles i and
j with equilibrium separation a and equilibrium orientation
described in terms of orthogonal vectors n_, n,, as depicted
in Fig. 2a (n,=-n,, n,=n,, k=2,3). Then EVM bond
potential is given as follows:

B B
U:?I(rg/_a)2+72(nj1_ni1)'di/+ @

B
4
+Bn, -n, _?(nﬂ ‘M, 0N )

Here r, is the radius vector connecting centers of bonded
particles, d,=r,/r,. Expressions for corresponding forces
and torques acting between bonded particles i and j have the
forms:

F, = B,(r,—a), +%[(nd -n,)—-((, —nl.l)~dl.j)d,.j],

B
M, =——2d, xn, +M"™,
2 v

if
M, =24 « mM” ©
1= 4 n;, - ,

Jt
M™ =B xn —ﬂ(n XM, +N, XN,)
=BT Xy T Xy, j3 X 1y3).

Parameters B,B,,B,, B, are directly related to longitudinal,
shear, bending, and torsional rigidities of a bond, respectively.
Note that in the framework of the EVM, these stiffnesses are
independent. Therefore, any values of stiffnesses can be fitted.
In the simplest case, parameters B, B,, B,, B, can be calibrated
using Euler-Bernoulli beam theory as follows (see papers
[19,20] for more details):

g _ES , _12EJ GJ

2F] GJ
1 aBz_ )B3=_ - psB4= p’(4)
a a a 2a a

where §,J,J, arearea, moment of inertia and polar moment
of inertia of a hollow beam:

S =27hryy, J=mhig, (fey” +0° 1 4), J,=2J. (5

Microscopically computed Young’s modulus E=1029 GPa
and shear modulus G=459 GPa [7] are used. Table 2 gives the
parameters of mass and elastic properties of the REs.

n
Particle i
nil n]l

n, / an /

a
| |
| |

a

i3 ni3
Particle j R
\

Table 2. Parameters of mass and elastic REs.

S, A2 J, At

3.480

m, amu I, amux A?

2649

R 4
], A

1.218x10° 142.7 6.960

The simulations are based on the rigid particle dynamics
module of the waLBerla multiphysics framework, which is
freely available under GPLv3 license at (www.walberla.net).
A full description of the parallel algorithms and their
realization [18,22-25] is beyond the scope of this paper;
here we only outline the basic features of our parallel
simulation environment. The contact detection used for
rigid body dynamics is slightly adapted for potential-
based interactions. This can be done by reinterpreting
the actual shape of a particle as its cut-off distance for all
potential based interactions. The actual contact detection
is a two-step process. The first step is a broad phase
collision detection which uses hierarchical hash grids [26,
27]. The second step uses algebraic formulas for narrow
phase collision detection. Such a choice leaves space for
possible algorithm generalizations allowing to incorporate
rigid bodies of various sizes, e.g. for modeling systems of
CNTs and nanoparticles [28]. The parallelization is based
on standard Message Passing Interface (MPI) [29] for
distributed memory architectures. The simulation domain is
divided in a balanced manner into rectangular subdomains.
These subdomains are distributed among the available
processes such that every process is responsible for one or
more subdomains. Each process stores the information of
all rigid bodies that are within its associated subdomains.
For correct contact detection of particles near the borders of
a subdomain so-called ghost particles are introduced. These
ghost particles mirror particles which touch the subdomain
but are located at a different one. This way they are available
for contact detection and force calculation. Time integration
can then take into account forces exerted by local contacts,
but also forces exerted by the contacts with ghost particles.
The general scalability of this approach is proven up to
almost half a million cores [18]. However, in our case some
serial operations (e.g. gathering of the total potential and
kinetic energy of the system) limit the efficiency of the
parallelization.

;Z N

\Z /‘
tension shear
bending torsion

b

Fig. 2. Schematics of two rigid particles linked with EVM bond (a). Four modes of the bond deformation (b).
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3. Numerical results

The problem of self-assembly and mechanics of a
representatively large specimen of a CNT film or a
buckypaper is still an open question. In this work, we
approach the problem of self-assembly of CNT films and
buckypapers as a benchmark for validation of our approach
and demonstration of its scalability.

3.1. Ultra-thin CNT film

Numerical simulation of a CNT film self-assembly is set
up as follows. A number of initially straight CNTs of given
length and orientation are deposited in a 3D rectangular
box, with periodic boundary conditions imposed along
in-plane (x and y) directions (Fig. 3a). The model contains
400 CNTs with aspect ratio of 100 and length of 136 nm
each (this corresponds to 2.4 x 10° model DOF and 1.6 x 10°
coarse-grained vdW contacts). The orientation of CNT is set
in such a way that in-plane distribution of CNT orientations
is uniform, but out-of-plane component is set in a relatively
narrow range of 0.1 rad. This system of CNTsis relaxed during
20000 cycles (0.4 ns) in a damped dynamic simulation. At the
initial stage, CNTs repel, excluding geometric intersections
due to repulsive part of the potential (1). At the next stage of
relaxation, CNTs evolve into a flat entangled network of CNT
bundles (Fig. 3b). An equilibrated metastable configuration
is characterized by certain amount of elastic strain energy
“locked” by vdW adhesion of CNTs. Fig. 3c illustrates the
evolution of kinetic energy, elastic strain energy and vdW
adhesion energy during the spontaneous self-assembly
process.

This relatively simple numerical experiment is used
in our work to probe the scalability and achievable model
sizes. Table 3 illustrates the parallel scalability observable
in our numerical experiments. It is clear that our platform
demonstrates nearly linear the distributed memory scalability
up to hundreds of computational cores. Previous large-scale
tests of waLBerla [18] indicated that our framework is likely
scalable up to hundreds thousands of cores and could be
efficiently run on largest world supercomputers from TOP-
500 list.

3.2. CNT buckypaper

It appears that the new platform will allow us to approach
carbon nanotube systems that are orders of magnitude
larger than those studied in most of the previous works.
As shown in Fig. 4, we successfully managed to simulate
the relaxation of one cubic micrometer of a thick CNT
film (buckypaper) with reasonable density of 0.013
g/cm®. The model contained 1.8x107 rigid body DOF
and approximately 1.1x10® coarse-grained vdW contacts
between rigid segments. Simulation setup followed the
procedure described above, but, unlike the case of a thin
film, periodic boundary conditions were applied along all
three Cartesian axes. Simulation employed 156 CPU cores
of a computational cluster, and took 5.5 hours. A complete
relaxation took 10° timesteps (2 ns).

Table 3. Parallel scalability of CNT film self-assembly simulations.

N of cores Number of Number of DOF | Time, s
nodes MPI processes
1 1 1 6755
2 1 2 3608
4 1 4 1971
8 ! 8 2.4x10° 973
16 1 16 499
32 2 32 255
64 4 64 144
128 8 128 86

x10°% ev

12.8
11.2
9.6 - strain energy

- vdW energy

8 - kinetic energy
6.4

4.8
3.2
1.6

0
-1.6 AN
3.2 B
0 40 80 120 160 200

x 100 timesteps

C

Fig. 3. Self-assembly of a carbon nanotube film. Appearance of a
specimen consisting of 400 CNTs with aspect ratio of 100 each at
the initial (a) and final (b) moment of simulation. On the inset —
enlarged structure of the specimen. Evolution of system kinetic
energy, vdW adhesion energy, elastic strain energy in the course of
simulation (c).

4. Conclusions

In the present work, we have presented the new capabilities
of mesoscopic distinct element method for modeling
carbon nanotube systems. The method was re-implemented
within highly scalable waLBerla multiphysics framework.
Parallel bonds, employed in the previous implementation,
were replaced with energy-conserving Enhanced Vector
Model, which allowed stabilizing large-scale simulations
of interacting elastic filaments. The engine incorporates
energy-conserving integration of rigid body dynamics of
arbitrary-shaped particles, and can be extended with the
advanced potentials for van der Waals interactions [13, 30]
and more realistic models for energy transfer to implicit
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b
-1 - vdW energy
-2 - strain energy
-3 - kinetic energy
-4
-5
0 20 40 60 80 100

x 100 timesteps
c
Fig. 4. 1 pm® specimen of a CNT buckypaper, containing 3 x 10*
CNTs with aspect ratio of 100 each (a). Magnified microstructure
of a material, featuring a network of bundles (b). Time evolution of
potential and kinetic energy of the system (c).

degrees of freedom. Owing to the excellent scalability
of simulations, the physical fidelity of modeling and the
greatpotential for further extension, the MDEM framework
could be established as a state of the art tool for numerical
modeling of carbon nanotube materials.
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