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A brief review of the cryston concept and its applications is given. By definition, crystons are shear carriers arising in the 
contact interaction of dislocations with intersecting slip planes. The notion of standard orientations of habits (SOH) is 
introduced for shear bands. On the example of fcc crystals with SOH of the {hhℓ}-type, the conditions for generation and 
propagation of crystons, as well as for a discrete change of habit orientations, are considered. The reasons for deviations from 
SOH are indicated. With regard to the formation of martensite crystals, сrystons can act as dislocation nucleation centers, 
carriers of threshold deformation and relaxation shear. The areas of promising investigations are mentioned.
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1. Introduction

At the present time, the need to consider plastic deformation 
as a hierarchical, multi-level process, where the meso-level 
plays a significant role (see, for example, [1—4]), is clearly 
realized. The universal character of the phenomenon 
of deformation localization does not cause any doubt 
either. In our opinion, the issue concerning the spectrum 
of deformation carriers at the meso-level has not been 
worked through with sufficient completeness. For instance, 
one has started to identify a rather general notion of 
superdislocation, applicable for describing a shear along 
arbitrary crystallographic planes, with dislocation pile-ups 
on typical slip planes.

It seems natural to introduce carriers of displacement 
vectors S during shear deformation, larger (an arbitrary 
number of times) in value than the lattice parameter, and 
having in the general case an arbitrary, but crystallographic, 
orientation. For the sake of brevity, such carriers have been 
termed [5] «crystons», in order to emphasize their closest 
connection with the crystalline medium.

In order to avoid ambiguity, we should note that 
talking about a cryston, we mean a shear carrier of the 
superdislocation type in which the displacement field is 
distributed in the carrier volume, and only in the limiting 
(degenerate) case, when the defects glide on one and the 
same plane, it comes down to a dislocation pile-up. It should 
also be stressed that we are referring to quite specific shear 
carriers that appear during interaction of dislocation groups 
belonging to slip systems with intersecting planes.

The aim of this paper is to present a brief review of the 
results achieved in the framework of the concept of crystons, 
focusing the attention on the ideology and illustration of 
the interpretations of complex processes, which will allow 

researchers (especially beginners) to perform quickly a 
preliminary analysis on the basis of the morphological 
attributes observed during formation of shear bands and 
deformation-induced martensite.

2. The basic postulates of the cryston 
model of formation of shear bands with 

boundaries of the {hhℓ} type (using single 
crystals with an fcc lattice as an example)

The experiments on deformation of single crystals [6—12] 
demonstrate that formation of shear bands with a boundary 
orientation different from easy slip planes, takes place in 
the regions where at least two slip systems with intersecting 
planes are active. Therefore it is natural, when describing 
a shear carrier, to determine the effective magnitude of its 
Burgers vector b as a characteristic obtained by a certain 
superposition of the Burgers vectors b1 and b2 of interacting 
dislocations. Then the vivid fact of the discreteness of the 
observed orientation spectrum of the planar boundaries 
of shear bands during the developing plastic deformation 
is naturally accounted for by a change in the fractional 
contributions of interacting dislocations. By analogy with 
the terminology accepted for description of martensite 
morphology, shear band boundaries are hereinafter referred 
to as habits. In addition, by definition, we shall introduce 
standard orientations of habits (SOH) connected with the 
interaction of pairs of easy slip systems with intersecting 
planes.

Let us consider the SOH (hhℓ) in crystals with an fcc 
lattice. This is the simplest case, as in fcc crystals there is 
only one type of easy slip planes {111}. Let us select, to be 
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specific, the system with the slip plane (111) as the basic one, 
and the system with the slip plane (111̄) as the conjugated 
one. Since the planes intersect along the direction Λ|| [11̄0], 
the contact interaction of dislocations forms, in the vicinity 
of the segments [11̄0], barriers characterized by the vector 
b which is composed by the Burgers vectors b1 and b2 of 
the dislocations belonging to the basic and conjugate slip 
systems. The cylindrical region of localization of the pile-up 
dislocation lines is characterized by a diameter of about 0.1 
μm and a generating line length prescribed by the length 
of the barrier segment [11̄0]. Such a barrier, containing 
n vectors b1 and m vectors b2, is a meso-concentrator of 
stresses and is characterized by the sum Burgers vector b: 

  b|| n b1+ m b2.   (1)

Natural appears the scheme of cryston generation by a 
generalized Frank-Read source (GFRS), in which the func-
tion of a pinned segment of an individual dislocation is now 
performed by a dislocation bundle (see Fig.1), and the result 
of the generation is a cryston (superdislocation) loop which 
can be considered as a set of closed loops localized in the re-
gion bounded by a surface that is topologically similar to a 
torus with a cross-sectional diameter ≤0.1 μm. 

Let us make a non-essential simplification assuming that 
the vectors b1 and b2 are equal in value and have a purely 
edge orientation with respect to the operating segment of the 
GFRS, i.e.

 b1|| [112]̄.  b2|| [112] (2)

Let us demand that the superpositional Burgers vector 
(1) should lie in the plane (hhℓ), which is equivalent to the 
orthogonality b to the direction of the normal N || [hhℓ], 
from Eq.(1),(3) follows the relationship

          h/ℓ=(n-m)/(n+m),                                  (4)

connecting the relation of the indexes h/ℓ with the numbers 
n and m, prescribing the contributions of the interacting 
dislocation systems. In particular, at m=0, we obtain h/ℓ=1, 
i.e. the slip is effected on the octahedral plane (111). At n=m, 
we obtain the orientation (001) corresponding to a cubic slip.

It is evident that an addition to the vector b of an arbitrary-
value vector b|| collinear to [11¯0], does not affect the fulfillment 
of the condition (3), since the vector b|| is orthogonal to any 

direction of [hhℓ]. This means that in defining the vector b 
lying in the plane (hhℓ), there is an additive ambiguity:

            b →b’=b+b||   (5)
 

Let us mention briefly the consequences that derive from 
the proposed cryston model. 

1. Let us remind that in the case of a shear on the plane 
with the normal N in the direction b, a material turn around 
the axis l is effected:

l || [b,N],                                        (6)

where the symbol [ , ] denotes the operation of vector 
multiplication. It is clear that in the case of a purely edge 
orientation of the vector b in respect to the line [11̄0], a shear 
on the plane (hhℓ) will be accompanied by a material turn 
around the axis l || [11̄0], i.e. around the dislocation line. A 
transition to the vectors b’ (5) having a screw component 
implies a change in the turn axis orientation. The larger is 
the fraction of the screw component b|| in the superpositional 
vector b’, the more the axis will deviate from the direction 
[11̄0], when staying in the plane (hhℓ).

2. If the angle between the vectors b1 and b2 is obtuse, then

  b2<(n b1)
2+ (m b2)

2   (7)

and, in accordance with the Frank criterion (see, e.g., [16]), 
a cryston is stable. It is easy to make sure that the inequality 
h<ℓ meets this case. Of course, there is no strict prohibition 
of realization of the variant h>ℓ (this issue is discussed in 
more detail in [15]).

3.  Already in the framework of the kinematic analysis 
focusing attention on the «structure» of crystons, it is 
possible to give a simple interpretation of the jump change 
of orientations, in particular, for the chain of habits observed 
in [8]:

(23 23 25) → (11 11 13) → (5 5 7) → (1 1 2).
Table 1 lists the orientations (hhℓ) and the values n / m 

derived from the relationship (4) and uniquely corresponding 
to the former.

The correlation of the values n / m with each other (the 
lower line of the table) demonstrates that a change of the ori-
entations can be interpreted as a result of successive modifi-
cation of the shear carrier structure, with an addition of an 
additional dislocation from a conjugate slip system at each 
stage. Indeed:

12 24 6 12 3 6;... ;... .
1 2 1 2 1 2

≡ ≡ ≡

It is evident that the largest number of changes in the 
discrete orientations of habits (hhℓ) in the process of plastic 

Table 1. Orientations of (hhℓ) and the corresponding structure of 
crystons (n/m)

(hhℓ) (23 23 25) (11 11 13) (5 5 7) (1 1 2)
n/m 24/1 12/1 6/1 3/1

(111) 

(11 1 ) 

[1 1 0] 

b  

А 

C 

L 

2mb  

1nb  

Fig. 1. Formation of an operating segment of the generalized Frank-
Read source [13-15]
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deformation could be achieved in the case of n = 2k, where k 
is an integer, since the doubling of m allows after k steps to 
reach the relation n / m=1. In the discussed case, n = 24 = 23.3, 
therefore after three stages of doubling of m, the relation 3 / 1 
is realized.

3. The critical stress of cryston generation

The formation of the operating segment of the GFRS is 
connected with a strong contact interaction of dislocations. 
Therefore, as the maximum transverse size of the segment’s 
section by a plane orthogonal to Λ (in the direction lying in 
the plane of the conjugate system), in the general case the 
quantity k∙d can be accepted, where d is the width of the 
stacking fault, m≥1. It is clear that at k=1, the width of the 
dislocation bundle is immediately prescribed by the quantity 
d. At large values of d, the probability of capture of dislocations 
gliding on the package of planes of the basic system is larger 
that at small values of d. This means that in materials having 
a lower stacking fault energy (SFE), for shear bands formed 
by crystons, a larger number n of dislocations of the basic 
system are included in a cryston, as compared with materials 
having a larger SFE. This conclusion is in agreement with the 
data on the habit orientations which are the first to appear 
at the stage of developed plastic deformation. For instance, 
in the Al3 %Cu alloy with an fcc lattice, which refers to 
materials with a high SFE value, the first to be observed 
were the boundary orientations close to (11 11 13). At the 
same time, for the Ni3Fe alloy characterized by an average 
value of SFE, the first to be observed were the boundary 
orientations close to (23 23 25). In accordance with Eq. (4), 
to the orientations (11 11 13) corresponds a cryston with a 
structure of n=12, m=1, and to the (23 23 25) corresponds a 
cryston with a structure of n=24, m=1.

At a value of k considerably exceeding 1, quite probable 
are the processes of division of the GFRS operating segment 
into an aggregate of segments characterized by the Burgers 
vectors with smaller contributions of dislocations of the 
conjugate system. The bowing of a system of such segments 
will be accompanied by the formation of a package of shear 
bands. As is known, the existence of shear band packages is 
rather typical for the stage of developed plastic deformation. 
It is clear, however, that the formation of such packages is 
not necessarily connected with the multiplication of sources 
owing to a double cross slip.

The probability of cryston generation grows in the process 
of plastic deformation. It develops against the background of 
the continuing formation of dislocation loops in the planes 
of the basic slip system (for instance, (111)) and, especially, 
the conjugate system (for instance, (111̄)) that entered the 
process of plastic deformation later. This leads to an increase 
in the density of barriers and, correspondingly, stress meso-
concentrators. An increase in the number of dislocation 
barriers in the basic and conjugate planes of a crystal fragment 
means, first, growth of the number of potential sources of 
shear carriers on planes different from closely-packed ones, 
and second, enriches the spectrum diversity of these sources, 
understood as the possibility to select different variants of the 
planes (hhℓ) and the Burgers vectors (1).

It is natural to believe that while the cryston density is 
not very high, an efficient stress relaxation can take place 
due to the propagation of a large number of crystons with 
the minimum value of the Burgers vector edge component 
in relation to the direction [11̄0] of the plane (hhℓ). An 
additional consideration in favor of this can be the well-
known evaluation of the critical value of stress τc for the 
action of the Frank-Read source (see, for example, [16,17]):
 

c
Gb
L

τ 

                                           
  (8)

where b is the Burgers vector’s modulus, G is the shear 
modulus, and L is the length of the dislocation segment 
pinned at the ends, whose periodic bowing is accompanied 
by the formation of dislocation loops. In the case of cryston 
generation, in criterion (8) b corresponds to the length of the 
superpositional Burgers vector (1) of a cryston capable of 
slip on the planes (hhℓ), and L corresponds to the length of 
the Lomer-Cottrell barrier, in the vicinity of which forms a 
dislocation bundle consisting of dislocations of interacting slip 
systems. Note should be made that if we consider a fragment of 
a single crystal with two interacting slip systems (and, hence, 
with one barrier variant, to be specific, with the line [11̄0]), as 
the L value, a value can be selected that satisfies the inequality 
L ≤ L⊥ where, L⊥ is the distance between the barriers: 

          
1L

⊥

⊥ρ
   (9)

where ρ⊥ is the barrier density in the direction perpendicular 
to [11̄0]. The latter remark takes into account that an 
unimpeded bowing of the superdislocation segment to a 
critical radius (ρ≥(L/2)) presupposes the presence of a free 
volume with a size of about L⊥.

4. On the evaluations of the Peierls 
stress for crystons, using as an example 

the shear of (hhℓ) [ℓℓ2h]̄ 
Since the movement of a cryston is realized in the periodic 
potential of the lattice, it is important to know the stresses 
required to overcome the lattice energy barrier without 
thermal activation. Such a type of stresses is an analogue of 
the Peierls stress τp for an individual dislocation (see, e.g., 
[16]), therefore it is natural to use for it the notation τpc.

Currently, there are efficient experimental methods to 
determine τp for dislocations (see, e.g., [18]). For instance, in 
the case of octahedral slip in metals with an fcc lattice (such as 
Cu, Al, Au, Ag, Pb), the reduced value of τp/G<10-5 (it should 
be noted that in bcc metals the value of τp/G is higher by two 
orders of magnitude).

Analytical estimates of τp were also made in [15,19] for a 
model of a cryston core displayed in Fig.2, whose propagation 
is accompanied by deformation of simple uniform shear.

If shear deformation on the plane (hhℓ) is prescribed by 
the value of tgψ, such a shear can be technically viewed as a 
result of a coordinated movement of partial dislocations on 
each of the (hhℓ) planes spaced by a distance:
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                          =hhl
ad


2 2+2h
  (10)

in Fig.2 the value of tgψ = 4/2 .
The sum of the Burgers vectors of partial dislocations 

should be equal to the magnitude of the superpositional 
Burgers vector:

[ 2 ]
1

b b
=

= ∑ j h
j



N

.                                      (11)

The number N of the summands in Eq.(11) is given by 
the relation 

hhl hhl

dN
d tg d

= =
ψ
b

,                              (12)

where d is the size of a shear band in the direction [hhℓ]. 
It is essential that in [15,19] a more consistent, than 

in the original Peierls-Nabarro variant [20], derivation of 
the τpc formula is discussed, which allows to consider also 
lattices different from a simple cubic one, on the basis of the 
conclusions made in the work [21], containing an obvious 
dependence of τp on the interplanar distance a' on the shear 
plane in the direction perpendicular to the dislocation line.

As a result, it is shown that the orientation dependence 
of τpc containing an increasing (quadratically with respect to 
the indices h and ℓ) pre-exponential factor, is effectively cut 
by a decreasing exponential (with an exponent that is also 
quadratic in respect to the indices h and ℓ) factor. Therefore 
the account of τpc does not impose insurmountable limitations 
on cryston generation. For instance, the processing of data 
for Ni3Fe provides an estimate of τpc~3.9×10-3G for slip on the 
planes (23 23 25).

It is also useful to mention independent physical 
considerations. First of all, let us note that the slip of 
quasi-planar crystons on the planes (hhℓ) with large (and 
almost coinciding) values of h and ℓ should be physically 
indistinguishable from slip on the octahedral plane (111). 
This means that (τpc)(hhℓ) at the limiting transition h→ℓ→∞, 
d→dhhℓ→0 should be small (on the order of τp for octahedral 
slip of dislocations). Of course, there is no need to realize the 
limiting transition dhhℓ→0, since there is a natural lower bound 
on the value of dhhℓ that allows to establish how true is the 
concept of the distinguishability of the nearest crystallographic 
planes (hhℓ). For that purpose, let us use the uncertainty 

relations for the position ∆xi and the momentum ∆pi:

 x pi i 2
∆ ⋅ ∆ ≥



.

Let us accept that ∆xi~dhhℓ=√2 dℓℓ2h  ̄ and take into account 
that the minimum kinetic energy Ek=((∆p)2)/(2m). Then, 
for example, at an atom mass of m~10-25 kg, for ∆xi≈dℓℓ2h ̄the 
energy Еk corresponds to the level of the absolute temperature 
210 К at the indices h=95 and ℓ=97. It is appropriate to stress 
that the carried out estimation refers, strictly speaking, to 
the case of absolute zero temperatures, i.e. the value of Еk 
corresponds to the zero-point oscillation energy. At Т>0, as 
was demonstrated in [22], the uncertainty relation is modified 
by multiplying the right-hand side by coth(h ω̄0)/(2kБТ), where 
ω0 is the typical oscillator frequency. Therefore, in reality 
separate planes (95 95 97) are physically indistinguishable 
already at room temperature. Evidently, this conclusion is the 
more so correct for planes with large indices. 

Taking into account that the plane (95 95 97) forms an 
angle φ≈0,565⁰ with the closely-packed plane (111), it can 
be expected that slip on such planes (and on planes even 
closer to closely-packed ones) is associated with stresses 
slightly exceeding (τp)111. Let us note additionally that at 
a large (but fixed) magnitude of the Burgers vector b of a 
cryston, a limiting deformation of simple shear, still having 
a physical meaning, is described by the quantity tgψ=b/dhhℓ 
and is localized in a layer with a thickness dhhℓ. Conversely, an 
increase in the transverse (in respect to the shear direction) 
size of a cryston core, at a fixed Burgers vector of a cryston 
 b, should be accompanied by an increase in τpc.

5. Factors controlling the selection of GFRS, 
and the mechanism of transition from 

standard to arbitrary habit orientations 
It is clear from the preceding analysis that at the first stage 
of deformation, most probable is the formation of habits 
with standard orientations. For the common case of uniaxial 
loading, an important role is played by the Schmid factor 
M, proportional to the product of the cosines of the angles 
between the loading axis and the shear directions (the 
Burgers vector b) and the normal to the shear plane. In 
essence, the factor M prescribes the angular dependence of 
the level of the external shearing stress τ for each GFRS. To 
determine the critical value for cryston generation τc, which 
we shall consider, by definition, exceeding τpc, according to 
Eq.(8), a consistent account of the orientation dependence 
is required, including the knowledge of not only the 
magnitudes of the Burgers vectors, but also the anisotropy 
of the shear modulus G, as well as the values of L≤L⊥. In the 
case of uniaxial compression, also possible is the mechanism 
of dislocation loop generation, connected with the bending 
instability of a dislocation bundle [15]. 

As was shown in [23], using such information, one can 
evaluate the deformation levels corresponding to a change 
in the habits listed in Table 1. Indeed, since the numbers m 
and n in (1) determine the concentrations of dislocations of 
the primary and conjugate systems (n/(n+m) and m/(n+m), 

Fig. 2. Formal dislocation scheme of a cryston - carrier of simple 
shear [ℓℓ2h ]̄ (hhℓ).
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respectively), the barrier density ρ⊥ in the averaged lattice of 
meso-concentrators should be proportional:

          ρ⊥~m/(n+m)=1/(1+(n/m))  (13)

Let the experimental values L⊥
ej and L⊥

ek correspond to the 
values of plastic deformation εj and εk Then, on the basis of 
Eq.(9) and (13), one can expect a quantitative correspondence 
for correlations of the following type:

               jek k

jkej

1 (n / m)
1 (n / m)

L
L

⊥ ⊥

⊥ ⊥

ρ +
= =

+ρ
    (14)

where (n/m)k satisfies the relation of dislocation fractions of 
the basic and conjugate systems under deformation εk, and 
(n/m)j - under deformation εj.

Let us take into account that under large deformations  
(ε >~   50%), the saturation effect is observed, manifesting itself in 
the existence of the minimum non-altering (with increasing 
deformation) interband distance, equal to 0.4 μm for Ni3Fe 
single crystals. 

Then, following [24], let us accept the minimum value of 
L⊥ =L⊥

5 = 0.4 μm, and assuming that to the latter corresponds 
(n/m)5=2, using Eq.(14), let us restore the values of (L⊥ )i 
(i<5) satisfying (n/m)i, which are listed in Table 2 for all the 
observed boundary orientations of shear bands. The values 
of εi in Table 2 have been found using the experimental 
dependence L⊥ (ε) described in [24].

The found values of εi play the role of some reference 
points on the σ‒ε curve. 

Certainly, the same factors are essential also during 
realization of shear bands with habits of the general type. It 
is clear that during propagation, a cryston loop segment may 
be fixed (for instance, owing to the interaction with particles 
of the previously precipitated phase or the interaction with 
cryston loops with different slip planes) in a position for 
which the Schmid factor increases. Then there will start the 
generation of crystons forming bands with habits containing 
a new GFRS segment. As demonstrated by analysis [14], this 
scenario that is realized during the formation of bands with 
the habits {123}. Thus, it is evident that, in principle, habits of 
an arbitrary crystallographic orientation are possible. 

A similar analysis can be performed for crystals with bcc 
and hcp lattices containing more representative sets of SOH 
[15, 25, 26]. 

An attractive feature of the cryston model is the possibility 
to predict the expected habit orientations of shear bands at 
the subsequent stage of deformation, in case the stress meso-
concentrators formed at the preceding stages are known.

6. Main areas of the cryston concept application 
to the formation of martensite crystals 

At the present time, cooling-induced martensite (CIM), 
stress-induced martensite (SIM) and deformation-
induced marteniste (DIM) are distinguished. CIM appears 
spontaneously during cooling of the initial phase (austenite) 
at a certain temperature Ms which is below the temperature 
T0 of phase equilibrium. SIM is realized under the action 
of the external elastic stress field σ, in a temperature range 
of Ms<T<Мsσ, where Мsσ corresponds to the temperature 
of the MT start during cooling in case σ is equal to the 
elastic limit. SIM does not differ in principle from CIM, 
since the wave mechanism for controlling the growth of 
separate martensite crystals [27—30] is similar. Therefore, 
the influence of external stress decreasing the symmetry of 
the system (crystal plus the external field) comes down to a 
reduction (in comparison with CIM) of the number of the 
observed martensite reaction variants. The only exception is 
the axis orientation of the external stress along the directions 
<111>, not disturbing the equality of 24 possible variants. 
To be specific, information about the γ‒α MT in iron-based 
alloys is used, and the crystallographic designations, as well 
as those above, refer to the fcc lattice basis. Let us remind 
that the most important specific feature of the heterogeneous 
nucleation mechanism for CIM and SIM is the emergence 
of the initial excited state in the elastic fields of dislocation 
nucleation centers (DNC).

By DIM (in a broad sense of the word) is understood 
martensite forming in a temperature range of Мsσ<T<Мd≤Т0, 
in the conditions in which plastic deformation of a material 
takes place. In this paper, we use the term «DIM» is a narrow 
sense. In particular, it is believed that during the formation 
of a DIM crystal, the controlling process is the process of 
cryston propagation, which carries shear deformation and 
stress fields exceeding, in the vicinity of the cryston core, 
the level of macroscopic elastic limit. In relation to crystons 
as carriers of threshold deformation, it is appropriate to 
distinguish between two variants. 1. The fulfillment of the 
threshold condition is achieved due to the influence of 
the meso-elastic field σmel, propagating with the cryston 
outside the cryston core. Let us designate the crystals of 
such DIM as DIM1. 2. DIM (let us designate it DIM2) is 
formed in the region where the main role is played by intra-
core deformation components of a cryston. To reveal the 
peculiarities of DIM2, it is necessary to analyze the elastic 
field created by a cryston, which in the first approximation 
can be regarded as a superposition of the elastic fields created 
by the distribution of prismatic dislocation loops, modeling 
the cryston core (see, for example, Fig.3).

Calculation of the elastic field of such a distribution 
represents a separate task, since the nearest vicinity of 
the cryston core with a high level of σmel is sensitive to the 
configuration of the core’s deformation field. At distances 
noticeably exceeding the size of the cryston core, while 
evaluating σmel one may confine oneself to the extrapolation 
of data for the cryston’s elastic fields in an approximation 
characterizing the cryston as a dislocation (dislocation loop) 
with a prescribed Burgers vector (equal to the cryston’s 
Burgers vector). 

Table 2. The values of (L⊥)i, calculated using formula (14) for Ni3Fe 
single crystals

i (n/m)i (h/ℓ)i (L⊥)i, μ εi, %
1 24/1 23/25 1.155 9
2 12/1 11/13 0.833 13.5
3 6/1 5/7 0.611 19
4 3/1 1/2 0.462 25.9
5 2/1 1/3 0.4 47
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Thus, crystons can be viewed as DNC for CIM and SIM 
crystals. As compared with separate loops, crystons have a 
modified angular distribution of the elastic field (primarily, 
due to a change in the Burgers vectors), as well as a cumulative 
effect ensuring strengthening of the field. This variant of the 
influence of crystons on the formation of CIM illustrates in 
pretty much detail the results described in [31]. 

Since σmel accompanies a shear, when analyzing the 
orientations of habit planes (HP) of DIM crystals one does 
not need to distinguish between the cases of DIM1 and 
DIM2, assuming that the shear is localized in a band whose 
planar boundaries determine the HP orientation of DIM 
crystals. It is evident that the trivial habit planes of DIM 
crystals in fcc crystals can be the planes {111}. It is also clear 
that the simplest non-trivial HP orientations coincide with 
{hhℓ}, although, in principle, HP orientations can be of the 
general type {hkℓ}. In this connection, it is reasonable to 
remind that the start of DIM crystals formation in materials 
with an fcc lattice is associated with an intersection of shear 
bands on the closely-packed planes of the γ-phase, either 
in the regions of intersection of ε-martensite crystals (with 
an hcp lattice) having, as known, the habits {111}, or at the 
intersection of the γ-phase twins, also appearing in the 
case of a shear on the planes {111} in the directions <112 >̄. 
Consequently, the above discussed conditions are fulfilled for 
contact interaction of dislocations, leading to standard habit 
orientations {hhℓ}. One of the very impressive examples of 
this sort is the data [32] on the collision of two austenite twins 
accompanied by the started growth of a deformation-induced 
α'-martensite nanocrystal. Reduction of the data from the 
measurements [32] of habits from a twin basis to an initial 
austenite basis shows that the α'-crystal habit coincides with 
{441}. The possibility to extract additional information to 
confirm the cryston model is associated with the specifics of 
the interacting objects. Indeed, the identity of the shear value 

4/2  in the colliding twins allows us to assert that the widths 
of twins in the region of the growth start of DIM crystals with 
the habits {441}, according to Eq.(4), should have the relation 
n/m=5/3, since the magnitude of the sum Burgers vector, 
correlated to a twinning shear, is directly proportional to the 
width of the twining plates. In Fig.4, a figure fragment from 
[32] is displayed, where we have marked the widths d1 and d2 
of the intersecting twin plates, the interaction of which leads 
to the formation of one of the α'-crystals.

It can be seen that the relationship of the widths d2/d1≈5/3 
corresponds to the one expected in the framework of the 
cryston model. 

At the same time, during a detailed elaboration of 
the morphological description, certain differences can 
be expected. Namely, in the case of DIM1 crystals, the 
boundaries will most likely have a crystallographic faceting 
not so distinct as in the case of DIM2 crystals. It is clear a 
priori that formation of DIM crystals is possible, in which the 
central part represents a DIM2 crystal, while its peripheral 
regions should be referred to DIM1. Not excluded is the case 
when an insufficient value of threshold deformation inside a 
cryston leads to a morpho-type where a shear band borders 
with a DIM1 crystal. In the morphological description, such 
a variant can be perceived as the initiation of deformation-
induced martensite by a shear band. In essence, all the above 
mentioned DIM variants are observed and were analyzed, 
with a different degree of completeness, in other papers by 
the authors (see, for example, [33—36]). Thus, the second 
important area in the application of the cryston approach in 
describing MT is related to the leading role of crystons in the 
formation of DIM crystals as shear carriers ensuring a loss of 
austenite stability in the propagation region.

Since the formation of all types of martensite crystals is 
accompanied by the appearance of internal stresses, quite 
expected is the participation of the cryston mechanisms of 
shear in the processes of stress fields relaxation at the stage 
of accommodation of the contacting phases. This is the third 
area of the application of the cryston approach in describing 
MT, which has confirmed its constructivity in explaining the 
interior dislocation structure of the laths [37] of the lath CIM. 

7. Promising areas for development and 
application of the cryston concept 

A successful interpretation of the results of the experiments 
conduced on single crystals creates a reliable basis for 
interpretation of the shear band formation in polycrystalline 
samples or, more generally, in a crystalline medium with a 
dislocation structure conditioned by the past history of the 
emergency of the sample under deformation. Note should 
be made that grain boundaries, like boundaries between 
fragments, are natural regions for localization of cryston 
sources. Besides, since boundaries are sinks for defects, 
such sources possess a rich potential for a change of their 

Fig. 4. Fragment of a figure from [32], clarifying the correlation of the 
fractions of interacting dislocations in the framework of the cryston 
model during formation of α'-crystals with the habits {441}γ.

Fig. 3. Example of the dislocation model of a cryston capable of 
performing the functions of DNC for CIM crystals and a carrier of 
simple shear[7710—]  (557)γ.
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structure. It means that there is a potential possibility  to 
create sources meeting the most optimum conditions for 
cryston generation (minimization of the value of τc and 
maximization of the values of M). As a result, the typical 
propagation mechanism of shear micro-, meso- and macro-
bands should be the relay variant of cryston generation. Here, 
the selection between the intergranular and intragranular 
shear during the band propagation is governed by the 
existing distribution of sources and the local threshold 
conditions of cryston generation. 

The concept of crystons looks promising for describing 
the textures of crystals under deformation. Here, one may 
expect also a description of the sets of characteristic spectra 
of misorientation angles of regions divided by high-angle 
boundaries, including, in particular, special boundaries. 

The considered quasi-classical scheme of generation 
describes in a satisfactory manner the observed experimental 
features of shear band formation at relatively small strain 
rates. For these conditions, a slow (viscous, with an intensive 
energy dissipation) character of the movement of separate 
crystons should be typical, in which an account of their 
kinetic energy does not play a significant role. However, it is 
clear that if a system of meso-concentrators (not necessarily 
ordered in the form of a superlattice) is present, possible is a 
collective effect of generation of a cryston avalanche due to a 
synchronous, mutually induced functioning of GFRS. Such 
an effect, surely critical to the rate of external deformation, 
should be accompanied by a change in the character of 
cryston movement in the avalanche (from viscous to quasi-
diabatic), and morphologically it should be reflected in the 
formation of a system of deformation meso-bands, whose 
synchronized (self-catalytic) occurrence will be accompanied 
by a macroscopic effect. It is obvious that a transition to a 
rapid (quasi-diabatic) character of cryston movement makes 
an account of its kinetic energy significant. 

In the case of a maximally rapid deformation under 
shock-wave loading, it is nonlinear wave dynamics that 
should be adequate to the physical picture from the very 
beginning. Notably, if a loaded sample in its past history 
experienced plastic deformation, the shock action may lead 
to the formation of a system of shear bands (with boundaries 
not necessarily coinciding with slip planes), initiating at least a 
one-time cryston generation by the earlier created GFRS. And 
if a shock-loaded perfect single crystal (with a low dislocation 
density), alongside with shear bands corresponding to the 
slip systems typical for this crystalline lattice, contains shear 
bands with boundaries of different orientations, a successive 
interpretation of the formation of such bands is possible only 
within a nonlinear-wave description. 

Finally, various combined scenarios may also be realized, 
with participation of the wave and cryston deformation 
carries. For instance, the formation of the basic component 
of a bainitic ferrite macro-plate is capable of stimulating the 
formation of twins of initial austenite in the wave mode, 
while in the emerged austenite, sub-laths of the additional 
component of bainitic ferrite start to grow [38].

It is understood that in all the cases, band formation is 
connected with the process of the propagation of deformation 
localized in the region of the growing band front, representing, 
in the mathematical aspect, a switching wave. Therefore, 

making a final summary, one can state that an interpretation 
of the dynamic structure of a displacement (distortion) field 
in the region of the front (as well as in the case of martensite 
crystals formation) is essential for understanding the details 
of the shear band formation mechanism. 
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