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In many-body nonlinear systems, a special kind of lattice vibrations, namely, discrete breathers (DBs) can be excited either 
thermally or by external triggering, in which the amplitude of atomic oscillations greatly exceeds that of harmonic oscillations 
(phonons). Coherency and persistence of large atomic oscillations in DBs may have drastic effect on quantum tunneling due 
to correlation effects discovered by Schrödinger and Robertson in 1930 and applied to the tunneling problem by Dodonov et 
al (1980) and Vysotskii et al (2010). In the present paper, it is argued that DBs present the most natural and efficient way to 
produce correlation effects due to time-periodic modulation of the potential well (or the Coulomb barrier) width and hence to 
act as breather ‘nano-colliders’ (BNC) triggering low energy nuclear reactions (LENR) in solids. In particular, due to the large 
mass difference between H / D and the metal atoms, there is a gap in phonon spectrum of metal-hydride / deuteride crystals, 
in which so called ‘gap DBs’ arise in the H / D sub-lattice resulting in time-periodic modulation of spacing between adjacent 
H / D and metal atoms. Tunneling probability for deuterium fusion in ‘gap DBs’ is shown to increase drastically with increasing 
number of oscillations resulting in the observed LENR rate under heavy water electrolysis.
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1. Introduction

The tunneling through the Coulomb potential barrier during 
the interaction of charged particles presents a major problem 
for the explanation of low energy nuclear reactions (LENR) 
observed in solids [1—4].

The tunneling coefficient (TC) is the Gamow factor, given by
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Where 2π is the Planck constant, E is the nucleus CM 
energy, μ is the reduced mass, r1, r2 are the two classical 
turning points for the potential barrier, which for the D—D 
reaction are given simply by 2Dmµ = , ( ) 2V r e r= . For two 
D’s at near to room temperature one has G~10-2760, which 
shows the need for some special conditions arising in solids 
under typical LENR conditions that help to overcome the 
Coulomb potential.

Corrections to the cross section of the fusion due to the 
screening effect of atomic electrons result in the so-called 
«screening potential», which acts as an additional energy 
of collision at the center of mass [5,6]. However, even the 
maximum screening potentials found in Pt (675 eV), PdO 
(600 eV) and Pd (310 eV) are far too weak to explain LENR 
observed at temperatures, which are bellow melting point of 
solids (in E-cat type installations) or boiling point of liquids 
(under heavy water electrolysis).

The most promising and universal mechanism of the 
stimulation of nuclear reactions running at a low energy is 
connected with the formation of coherent correlated states 
of interacting particle, which ensures the large probability of 

the nuclear reactions under conditions, where the ordinary 
tunneling coefficient is negligible. This mechanism is based 
on the generalized uncertainty relation (UR) by Schrödinger-
Robertson [7,8], which takes into account correlations 
between coordinate and momentum operators. Correlation 
effects have been applied to the tunneling problem by 
Dodonov et al [9] and by Vysotskii et al [10—13] who 
demonstrated a giant increase of sub-barrier transparency 
caused by increasing correlation coefficient at special high-
frequency periodic action on quantum system.

In this paper, we argue that such an action can be most 
naturally and effectively realized due to time-periodic 
modulation of the width of potential wells for atoms 
oscillating near gap discrete breathers (DBs). DBs are spatially 
localized large-amplitude vibrational modes in lattices 
that exhibit strong anharmonicity [14—23]. Due to the 
crystal anharmonicity, the frequency of atomic oscillations 
increase or decrease with increasing amplitude so that the 
DB frequency lies outside the phonon frequency band, 
which explains the weak DB coupling with phonons and, 
consequently, their robustness at elevated temperatures. DBs 
can be of one-frequency or many-frequency type [23]. In the 
former case, all atoms vibrate with the same frequancy, while 
in the latter case, they vibrate with different but commensurate 
frequencies. DBs can be excited either thermally or by 
external driving, as was observed experimentally [17,18] and 
modelled in various physical systems [19—26].

Presently the interest of researchers has shifted to the 
study of the catalytic impact of DBs on the reaction rates 
in solids and on the biological functions of biopolymers 
[26,27]. Excitation of DBs in solids have been shown to result 
in a drastic amplification of chemical [27—30] and nuclear 
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[31] reaction rates in their vicinity. In the former case, the 
amplification mechanism is based on modification of the 
classical Kramers escape rate from a potential well due to a 
periodic modulation of the well depth (or the reaction barrier 
height), which is an archetype model for chemical reactions 
since 1940 [32].

In the latter case, so-called gap DBs, which can arise in 
diatomic crystals such as metal hydrides / deuterides, have been 
argued to be the LENR catalyzers due to time-periodic closing 
of adjacent H / D atoms, which should enhance their fusion 
probability [31]. The main problem with this mechanism 
was that unrealistically small separation between atoms (~ 
0.01 Å) would have attained in order to increase TC up to the 
level required for a noticeable LENR rate at the best choice of 
parameters. However, this estimate did not take into account 
correlations between coordinate and momentum operators 
arising in a DB due to cooperative nature of its dynamics. 
These effects are analyzed in the present paper.

2. Formation of correlated states in 
non-stationary potential well

2.1. Schrödinger-Robertson uncertainty relation

The tunneling effect for nuclear particles is closely related to 
the uncertainty relation (UR), which have been generalized 
with account of correlation effects independently by 
Schrödinger [7] and Robertson [8], which can be written in 
the following form [9]
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where r is the correlation coefficient between the coordinate, 
x, and momentum, p. At r=0 (non-correlated state) Eq.(2) is 
reduced to the well-known Heisenberg UR, while in a general 
case, a nonzero r in the UR can be taken into account by 
the formal substitution ef→  , which designates a shift of 
the border between the classical and quantum descriptions 
of the same object in the transition from non-correlated to 
correlated state [13].

The most impressive consequence of correlation effects is 
a dramatic increase of the tunneling probability for a very low 
barrier transparency (tunneling probability) in the initially 
uncorrelated state 0 1rG = <<  [13]:
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which is within an order of magnitude close to the result of the 
exact calculation of the potential barrier transparency using 

rigorous quantum-mechanical methods [13]. From Eq.(6), 
it follows that when a coherent correlated state (CCS) with 
|r|→1 is formed, the product of the variances of the particle 
coordinate and momentum increases indefinitely, and the 
barrier becomes ‘transparent’:

 	      max1 1 even if → → <<rG E V , 	 (7)
A CCS can be formed in various quantum systems, such 

as a particle in a non-stationary potential well. The most 
relevant case in relation to DBs is considered bellow.

2.1. Formation of CCS in oscillating potential well

A model system considered by Vysotskii et al [11—13] for 
evaluation of the correlation coefficient is a non-stationary 
harmonic oscillator for a particle with the mass M, coordinate 
x (t) placed in a non-stationary parabolic potential well,

	 ( ) ( )( ) ( )( )2 2
, 2=V x t M x t tω ,	 (8)

with the eigenfrequency ω(t) changing periodically, which 
was shown to result in an increase of |r(t)|. This regime can be 
provided, e.g. at a constant well depth Vmax and the potential 
well width L(t) that changes periodically resulting in a time-
periodic modulation of the eigenfrequency as follows:

( ) ( ) 2
0 0 max 01 cos ,  8Ω= + Ω =L t L g t L V Mω ,  (9)

where L0 and ω0 are the initial parameters of the well before 
the action of correlated forces, gΩ  and Ω are the modulation 
amplitude and frequency, respectively.

Fig.1 shows that the probability density |ψ(x,r)|2 for 
the particle localization in the time-periodic well is very 
narrow for uncorrelated state r=0 (solid black), while it 
spreads significantly into the sub-barrier region for strongly 
correlated state r=0.98 at the times of the maximal coordinate 
dispersion (dash green) [10].

From a detailed analysis [11—13] it follows that the 
process of formation of strongly correlated coherent state 

Fig. 1. Sketch of the time-periodic parabolic potential V(x,t) at dif-
ferent moments of time corresponding to the initial (solid black), 
minimal (dash red) and maximal (dot blue) well width.  Probabil-
ity density ( ) 2

,x rψ  for the particle localization in the well and 
in the sub-barrier region is shown schematically for uncorrelated 
state r=0 (solid black) and for strongly correlated state r=0.98 at 
the times of the maximal coordinate dispersion (dash green) [10]. 

0 0x Mω=  is the half-width of the particle localization in the 
unperturbed well.
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with |r|max→1 in response to the action of limited periodic 
modulation (Eq.9) is possible only at any of two conditions: (i) 
Ω=ω0 (resonant formation) or (ii) Ω is close to 2ω0  (parametric 
formation): |Ω-2ω0|≤gΩω0. In these regimes, the correlation 
coefficient oscillates with time but its amplitude |r|max 
increases monotonously with the number of modulation 
cycles, n=ω0t/2π, resulting in a giant increase of the tunneling 
coefficient, as demonstrated in Fig.2, which shows the TC 
evaluated by Eq.(10) that takes into account both the electron 
screening [31] and the correlation effects [13]:
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where L is the minimum equilibrium spacing between D atoms 
determined by electron screening, E is their kinetic energy 
(~eV / 40 at room temperature) << screening energy~e2/L. 
One can see that the difference in electron screening and 
the corresponding initial D—D distances in a D2 molecule 
(L0=0.74 Å) and in the PdD crystal (L0=2.9 Å) leads to a 
huge tunneling difference in the initial (uncorrelated) state, 
in which TC is negligible in both cases. However, with 
increasing number of modulation cycles, hef(r) increases as 
well resulting in a giant increase of TC up to ~1 in several 
dozens of cycles for parametric formation Ω≈2ω0, which does 
not require exact coincidence of the frequencies [13].

The most important and nontrivial practical question 
now is how to realize such a periodic action at atomic scale? 
Modulation of the frequency of the optical phonon modes via 
excitation of the surface electron plasmons by a terahertz laser 
suggested in [13] as a driving force for the CCS formation 
is very questionable [31] (see also discussion in section 5), 
and it does not explain LENR observed in the absence of 
the laser driving. In the next section, we will consider a new 
mechanism based on the large-amplitude time-periodic 
oscillations of atoms naturally occurring in discrete breathers.

3. Breather-induced time-periodic 
action on the potential landscape

In order to develop a mechanism for DB-based LENR in 
diatomic crystals PdD and NiH we note that at ambient 

conditions, they crystallize in FCC structure with the space 
group of the NaCl structure [33—35]. Molecular dynamic 
(MD) simulations have revealed that diatomic crystals with 
Morse interatomic interactions typically demonstrate soft 
type of anharmonicity [19], which means that DB’s frequency 
decreases with increasing amplitude, and one can expect to 
find so-called gap DBs with frequency within the phonon gap 
of the crystal. The large mass difference between H or D and 
the metal atoms is expected to provide a wide gap in phonon 
spectrum (Fig.3), in which DBs can be excited e.g. by thermal 
fluctuations at elevated temperatures as demonstrated by 
Kistanov and Dmitriev [20] for the different weight ratios and 
temperatures. Density of phonon states (DOS) of the NaCl-
type crystal for the weight ratio m/M=0.1 at temperatures 
ranging from 0 K to 620 K is shown in Fig.3a-d.

Fig.4 shows that DOS for PdD and PdH measured 
experimentally are qualitatively similar to DOS calculated for 
the NaCl-type crystals, while first-principles calculations [34] 
point out that phonon spectra in PdD and PdH are strongly 

Fig. 2. Tunneling coefficient increase with increasing number of the 
well modulation cycles, n=ω0t/2π, evaluated by Eq.(11) for Ω=ω0 
(a); Ω≈2ω0 (b), gΩ=0.1 for two D-D equilibrium spacings: in a D2 
molecule (L0=0.74 Å) and in the PdD crystal (L0 = 

aPdD (2/2)0.5≈ 2.9 Å). 
aPdD=4.052 Å is the PdD lattice constant at 295 K [33].

Fig. 3. DOS of the NaCl-type crystal for the weight ratio m/M=0.1. 
Reproduced from [20] Copyright by APS.

Fig. 4. DOS for PdD and PdH crystals based on the force constants 
obtained from the Born von Karman mode1 [33] fitted to the 
experimental results for PdD0.63 assuming that the forces in PdD and 
PdD0.63 were identical. Reproduced from [33] Copyright by APS.
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renormalized by anharmonicity.
The appearance of two additional broad peaks in the MD 

modelled DOS at elevated temperatures can be seen in Fig. 3d. 
The appearance of the peak in the gap of the phonon spectrum 
can be associated with the spontaneous excitation of gap DBs 
at sufficiently high temperatures, when nonlinear terms in the 
expansion of interatomic forces near the equilibrium atomic 
sites acquire a noticeable role. As the temperature increases, 
the lifetime and concentration of gap DBs in the light atom 
sub-lattice increase [21]. The appearance of the peak above 
the phonon spectrum at sufficiently high temperatures can be 
associated with the excitation of DBs of another type, which 
manifest the hard type nonlinearity. This conclusion agrees 
with a recent result by Zakharov et al [36] for another type 
of diatomic crystals, Pt3Al, in which both soft type DBs and 
hard type DBs were modelled.

Dynamic structure of gap DBs has been revealed in [19] 
where they have been excited simply by shifting one light 
atom or two neighboring light atoms from their equilibrium 
positions while all other atoms were initially at their lattice 
positions and had zero initial velocities. In this way, for the 
weight ratio m/M=0.1, three types of stable DBs have been 
excited (Fig.5), frequencies of which are shown in Fig.6 as the 
functions of their amplitudes.

All three types of gap DBs are characterized by a high 
degree of spatial localization of atomic displacements with 
only one or two atoms having large amplitudes. They shift 
positions of neighboring atoms, which continue to oscillate 
with small (harmonic) amplitudes but with frequencies 
coinciding with DB frequencies shown in Fig.6. Degree of 
spatial localization at m/M=0.1 remains almost unchanged 
for about 5000 breather oscillations.

One can see that the maximum DB amplitude is about 0.34 
Å for the polarization [100]1, in which the nearest neighbor 
(heavy atom) is separated from the light atom by 3.125 Å. The 

minimum equilibrium spacing between the light atoms along 
[110] is 4.4 Å, while the maximum DB [110]1 amplitude is 
about 0.31 Å. An attempt to increase its amplitudes beyond 
the maximal value leads to its transformation into the DB 
[100]1, which becomes unstable upon further increase of the 
amplitude beyond 0.34 Å and decays by radiating phonons 
[19].

High frequency DBs in NaCl type crystals (manifested 
by the peak above the phonon spectrum in Fig.3d) have not 
been modelled so far to our knowledge, but they have been 
found in a crystal of Pt3Al [36].

There are two main peculiarities of DBs related to 
the formation of coherent correlated states, namely, 
oscillations of atoms comprising a DB are (i) time-periodic 
and (ii) coherent, i.e. they have different amplitudes and 
commensurate frequencies. In particular, the central atom 
can vibrate  with a large amplitude and frequency, while 
neighboring atoms vibrate with much smaller amplitudes 
and frequencies equal to the half of the main DB frequency 
[23]. Cosider a DB localized at one light atom that oscillates 
with a large amplitude, A in the anharmonic potential well, 
which determines its frequency Ω as follows [19]

( ) 2 1 22 23 , ,
4

Ω = + = =A A
m m
γ γα β α β

      
(11)

     
( ) ( )1 1 1 2 2 2,= + = +A R A S A R A Sγ γ
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where α determines the quasi-harmonic eigenfrequency 
of the potential well, and γ1,2 describes its anharmonicity. 
Both of them depend on the DB amplitude, since it changes 
the force constants γ1,2 of the potential. β is positive, which 
corresponds to hard type of nonlinearity with frequency 
increasing with A. However, the central atom oscillating with 
large amplitude shifts positions of neighboring atoms so that 
α decreases with A resulting in the observed decrease of Ω(A)  
shown in Fig.6. Solid curve shows Ω(A) for the DB [100]1 in 
this single degree of freedom model, which gives a good fit 
with ‘exact’ dashed curve for A<0.2 Å.

Let us apply this model to a DB in the PdD lattice, the 
DOS of which is shown in Fig.4. The lower optical phonon 

Fig. 5. Stroboscopic pictures showing motion of atoms for the DBs 
of three types: (a) [110]1, (b) [100]1, and (c) [100]2, where figures 
in brackets describe polarization and the subscript indicates the 
number of the atoms oscillating with large amplitude. In panels (a) 
and (b) displacements of the atoms are multiplied by factor 7, and in 
panel (c) by factor 5. Heavy (light) atoms are shown by open (filled) 
circles. Reproduced from [19] Copyright by APS.

Fig. 6. Frequencies, as the functions of the DB amplitudes, A, for the 
DBs of three types: [110]1, [100]1, and [100]2, excited by simulations 
[19] for m/M=0.1, where figures in brackets describe polarization 
and the subscript indicates the number of the atoms oscillating with 
large amplitude. Solid curve gives Ω(A) found for the DB [100]1 in 
the frame of single degree of freedom model (see text). Horizontal 
line gives the upper edge of the phonon gap. Adapted from [19] 
Copyright by APS.
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frequency (~9 THz) in Fig.4 is determined by the mass of 
D, while the higher acoustic phonon frequency (~6 THz) is 
determined by the mass of Pd and by the corresponding force 
constants, which are different for D—D, D-Pd and Pd-Pd 
interactions and depend on D content.

Fig.7a shows DB<110> frequency Ω(A) given by Eq.(11) 
and eigenfrequency of (quasi-harmonic) potential wells for 
neighboring D atoms, ω0(A) as functions of the DB amplitude:

 ( ) ( ) ( )1
0 1 1 1

2
,= = +

A
A A R A S

m
γ

ω γ  	 (13)

evaluated with the force constants assumed to fit DOS of 
PdD0.63 (Fig.4):

     R1 =-0.026 eV / Å3, S1 =0.008 eV / Å2,
     R2 =-0.017 eV / Å5, S2 =0.035 eV / Å4	 (14)

The frequency of the optic modes at the zone center (~9 
THz), which determines the maximum DB frequency, is low 
in comparison with other hydrides, thus implying a weak 
nearest-neighbor Pd-D force constant in PdD0.63 [33]. One of 
the possible reasons for this broadness of the optic phonon 
spectrum is due to nonstoichiometry [37].

Fig.7b shows Ω(A) and ω0(A) evaluated with the force 
constants fitted to raise the lower optic phonon edge for 
stoichiometric PdD up to 22 THz and to broaden the phonon 
gap accordingly:

	 R1 =-0.143 eV / Å3, S1 =0.048 eV / Å2,
        R2 =-0.013 eV / Å5, S2 =0.143 eV / Å4	 (15)

In the PdD0.63 case (Fig.7a), increase of the DB amplitude 
up to 0.274 Å leads to the excitation in neighboring wells of 
the harmonic with the frequency~ 3.3 THz equal to half of 
the main DB frequency (~6.6 THz), which interacts with 
acoustic phonons below the gap and makes the DB unstable. 
This case is similar to the NaCl type case for m / M>0.2 
considered in [19].

In the PdD case (Fig.7b), increase of the DB amplitude 
up to the critical value Acr≈0.292 Å leads to the excitation 
in neighboring wells of the harmonic with the frequency~ 
7.5 THz equal to half of the main DB frequency (~15 THz), 

which lies above the upper acoustic phonon edge and does not 
interact with phonons. Such two-frequency DBs are stable, 
and they lead to the parametric formation of CCS of deuterons 
in the neighboring quasi-harmonic potential wells subjected 
to time-periodic modulation of their eigenfrequencies  
ω0 (Acr)≈7.5 THz by the DB frequency Ω(Acr)≈15 THz. As a 
result of such modulation, D—D fusion is expected to occur 
in several dozens of DB cycles (Fig.2) since the modulation 
amplitude gΩ≈Acr/(aPdD(2/2)0.5)≈0.1.

Thus, the D—D fusion rate in PdD will be determined by 
the excitation rate of DBs having amplitudes near the critical 
value Acr, which will be evaluated in the following section.

4. Excess power output under 
heavy water electrolysis

The DB excitation occurs by thermal fluctuations and 
by external driving displacing atoms from equilibrium 
positions. The rate of thermal excitation of DBs having 
energy E is given by Arrhenius law [27,31]

        
( ) expth ef

DB DB DB
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EK E k
k T

ω
 

= − 
  , 	 (16)

where kef
DB is the efficiency coefficient for DB excitation, kB is 

the Boltzmann constant, T is the temperature, and ωDB≈Ω(0) 
is the attempt frequency that should be close to the edge of 
the phonon band, from which DBs are excited.

External driving of the DB excitation can be provided by 
focusing collisions and moving DBs (a.k.a. quodons) that are 
generated by knocking of surface atoms out of equilibrium 
position by energetic ions or molecules under electrolysis. 
The amplitude of the quasi-periodic energy deviation of 
atoms along the quodon pathway, Vex, can reach almost 1 eV 
with the excitation time, τex, of about 10 oscillation periods, 
which results in the amplification of DB generation rate 
proportional to the electric current density J [31]:
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where ωex is the mean number of excitations per atom per 
second caused by the flux of quodons, e is the electron charge, 
b is the atomic spacing. The product Fqb

2 is the frequency of 
the excitations per atom within the layer of a thickness lq equal 
to the quodon propagation range, while the ratio 3lq/Rp is the 
geometrical factor that corresponds to the relative number of 
atoms within the quodon range in a PdD particle of a radius 
Rp. The coefficient of proportionality between Fq and the 
electron flux J/e assumes that each electrolytic reaction that 
involves a pair of electrons, releases a vibrational energy of 
~1 eV, which is sufficient for generation of one quodon with 
energy Vex<1 eV.

Multiplying the DB generation rate (18) by the tunneling 

Fig. 7. DB frequencies and eigenfrequencies of the potential wells as 
functions of the DB<110> amplitudes for different force constants 
assumed for PdD0.63 (a) and PdD (b) lattices. <110> is the close-
packed D-D direction.

	            a				         b
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probability in a DB, G*(L,r) Eq.(10) and integrating over DB 
energies one obtains the D—D fusion rate per PdD unit cell:
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DB
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DD DB
E E

R K E G r
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that dramatically depends on the correlation coefficient, r, 
which, in its turn, strongly depends on the DB amplitude ~ 
DB energy and the number of DB cycles before decay, nDB.

Only a small fraction of DBs can form CCS in their vicinity 
and act as effective breather nano-colliders (BNC). They must 
have some particular energies, E*

DB±∆E, in order to cause the 
parametric resonance producing CCS. If ∆E<<kBT, Eq.(19) is 
reduced to:
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where the number of DB cycles required to make the 
Coulomb barrier ‘transparent’, n*

DB≈100 at gΩ=0.1.
Multiplying the DB-induced fusion rate (20) by the 

energy ED-D= 23.8 MeV, produced in D—D fusion one obtains 
the excess energy production rate per atom, PD-D as a function 
of temperature and electric current:

     ( ) ( )*, , ,− −= J
D D DB DB D DP T J K E T J E ,	 (21)

Usually, the output power density is measured per unite 
surface of a macroscopic cell, PS

D-D, as a function of the electric 
current density at a fixed temperature and at temperature 
increasing with J, as illustrated in Fig.8. This is given by the 
product of PD-D , the number of atoms per unit volume, 1/νPdD 
￼  (νPdD being the atomic volume of PdD) and the ratio of the 
cell volume to the cell surface:

            ( ) ( ), ,− −=S S
D D D D

PdD

LP T J P T J
υ ,	 (22)

LS  is the cell size, if cubic, or thickness, in case of a plate.
Fig.8 shows the LENR output power density DBs as 

a function of electric current density and temperature 
evaluated by Eq.(22) assuming material parameters listed in 
Table 1. Comparison between the model and experimental 
data shows that the present model describes quantitatively the 
observed linear dependence of PS

D-D on the current density at 
a constant temperature as well as the deviation from the linear 
dependence, if temperature increases with increasing electric 
current density. Thermally-activated nature of the reactions 
leading to LENR has been noted for quite a long time [3], and 
the activation energy was estimated in some cases to be ~0.65 
eV. The present model not only explains these observations, 
but also reveals that the underlying physics is a consequence 
of the synergy between thermally activated and externally 
driven mechanisms of the DB excitation in deuterated 
palladium.

5. Discussion

The BNC concept proposed in a previous work [31] did 
not take into account correlation effects, and hence, 
unrealistically small separation between atoms (~0.01 Å) 
would have to be attained in order to enhance the LENR 
rate up to a noticeable level. The main message of this paper 
is that DBs present the most efficient way to produce CCS 
due to time-periodic modulation of the potential well width 
(or the Coulomb barrier width) and hence to act as BNC 
triggering LENR in solids. Fig.9 demonstrates effect of CCS 
in the BNC model manifested by a number of DB cycles 
required to produce experimentally observed LENR rate 
~1W / cm2. It can be seen that in the modified model, the DB 
lifetime plays much more important role than the tunneling 
D—D spacing, and that DB amplitude of several fractions 
of angstrom is sufficient to produce required effect, if CCS 
parametric conditions are met.

Medvedev et al [38] has demonstrated by means of MD 
simulations that gap DBs can be excited in the Al sub-lattice 
of Pt3Al under the action of time-periodic external driving. 
Time-periodic shaking of the surface atoms at frequencies 
near the optic phonon edge resulted in the DB excitation in the 
sub-surface layers. These findings point out at the possibility 
of LENR stimulation by external time-periodic excitation 

Table 1. Material parameters used in the model

Parameter Value

D-D equilibrium spacing in PdD, b (Å) 0.29
DB parametric amplitude, Acr (Å) 0.292
DB parametric energy, E*

DB(eV) 1
DB initial frequency, Ω(0) (THz) 21

DB parametric frequency, Ω(Acr) (THz) 15

DB-induced harmonic frequency, ω0(Acr)(THz) 7.5

Min. DB lifetime, τ*
ex=n*

DB/ωDB (s) 6×10-12

DB excitation efficiency, kef
DB 4×10-11

Quodon excitation energy Vex(eV) 0.8
Quodon excitation time, τex(s) 6×10-13

Quodon propagation range, lq=10b  (nm) 2.9
Cathode size/thickness (mm) 5

Fig. 8. LENR output power density according to the model Eq.(22) as 
a function of electric current density at constant T and T increasing 
with J as T=300K+100J. Experimental data [3], Fig.(42).
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of surface atoms. That is what has been actually realized in 
«Terahertz» laser experiments [39] on the stimulation of 
nuclear reaction at a joint action of two low-power laser 
beams with variable beat frequency ranging from 3 to 24THz 
on the cathode surface during the D2O electrolysis in the PdD 
system.

Fig.10 shows the experimental frequency dependencies of 
the excess power in these experiments. Three main resonances 
of excess energy released at ~8±1 THz, 15±1 THz and 21±1 
THz correlate with the DB-induced harmonic frequency, 
ω0(Acr)≈7.5 THz, DB parametric frequency Ω(Acr)≈15 THz 
and DB initial frequency, 21 THz, respectively (see the inset 
in the figure). According to the present model, the highest 
resonance is the biggest, since it is caused by amplification 
of DB excitation at the edge of optic phonon band. The 
medium resonance is due to tuning action of external driving 
on the DB frequencies: it increases the fraction of DBs with 
parametric frequency. The lowest resonance is due to tuning 
of harmonic frequencies by external driving: it increases the 
fraction of D atoms subjected to the parametric action by 
DBs.

The atoms are shaken by laser beams via excitation of the 
surface electron plasmons as suggested in [39]. It explains 
the necessity of external magnetic field for producing 

resonance effects [39,13]. However, the direct modulation 
of the frequency of the optical phonon modes by plasmons 
proposed in [13] as a driving force for the CCS formation 
is very questionable [31], and it does not explain LENR 
observed in the absence of the laser driving at slightly higher 
electric current or temperature [39]. In the present model, the 
laser driving acts just as a tuning tool for the CCS formation 
by DBs induced by temperature and electric current.

One of the new and important consequences of the 
present model is that it offers a principal explanation for the 
critical D loading required for LENR. It is known that excess 
heat usually does not appear until the loading is near 0.83 
[39], whereas neuron scattering measurements of the phonon 
spectra have been done for non-stoichiometric PdD0.63, the 
DOS of which (Fig.7a) does not support formation of CCS by 
the present mechanism, since its phonon gap is not sufficiently 
broad. Our hypothesis is that mechanical stresses arising in 
PdDx above the critical loading x>0.83 can make the phonon 
band similar to that shown in Fig.7b thus switching on the 
DB-induced formation of CCS.

Structural information on ball milled magnesium hydride 
from vibrational spectroscopy and ab-initio calculations 
[40] has shown that the high-energy part of the vibrational 
spectrum is rather sensitive to stresses induced by for 
instance ball milling. The structure of PdD at extreme loading 
is similar to that after the ball milling, which seems to support 
the present hypothesis.

Another factor concerning the role of the crystal disorder 
in LENR is a striking site selectiveness of DB formation in 
the presence of spatial disorder [26,30,41]. It means that the 
process of loading or special ‘nano-treatment’ creates the 
disordered cluster structures, which may be enriched with 
sites of zero or small threshold energies for the DB excitation. 
Such sites are expected to become the nuclear active cites, 
according to the present model.

6. Conclusions and outlook

Persistent spatially localized vibrations of nonlinear 
origin known as discrete breathers (DBs) that can be excited 
generically in many-body nonlinear systems are proposed 
to produce coherent correlation states (CCS) due to time-
periodic modulation of the potential well width and hence to 
act as breather ‘nano-colliders’ (BNC) triggering low energy 
nuclear reactions in solids. In particular, tunneling probability 
for deuterium (D—D) fusion in ‘gap DBs’ formed in metal 
deuterides has been shown to increase with increasing 
number of oscillations by ~190 orders of magnitude resulting 
in the observed LENR rate at extremely low concentrations 
of DBs.

The present model explains all the salient LENR 
requirements: (i) high loading of D within the Pd lattice as 
preconditioning needed to prepare PdD crystallites with 
appropriate DOS, and (ii) the triggering by D flux or electric 
current, which facilitates the DB creation by the input energy 
transformed into the lattice vibrations.

The present model describes the observed linear 
dependence of the excess power output on the current density 
under heavy water electrolysis at a constant temperature as 

Fig. 9. LENR output power density according to Eq.(24) as a function 
of the tunneling D-D spacing at strong and weak CCS.

Fig. 10. Excess power (mW) under joint action of two low-power 
laser beams with variable beat frequency on the surface of the Pd 
cathode during the electrolysis in heavy water [39]. The inset (from 
Fig. 7b) shows parity between critical DB-induced frequencies and 
the resonance frequencies [39] designated by dashed arrows.
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well as its exponential increase with increasing temperature, 
which can be the basic LENR mechanism in the hot CAT-
type installations.

The proposed mechanism of CCS formation near the 
gap DBs requires sufficiently broad phonon gap that is not 
observed below the critical D loading ~0.83 examined so 
far. Further investigations of DOS and DBs in the extreme 
conditions of LENR are required.

The present results are based only on the known physical 
principles and on independent atomistic simulations of DBs in 
metals and ion crystals using realistic many-body interatomic 
potentials. Atomistic modeling of DBs of various types in 
metal hydrides / deuterides is an important outstanding 
problem since it may offer the ways of engineering the nuclear 
active environment.
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