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In recent years, researchers' attention is drawn not only to the development of an increasing number of different elements of 
nanoelectronics based on polymer films, but also to the study of electrical properties and the carrier transport mechanisms 
in these films. This article describes the features of charge transport, including the phenomena at the interface between the 
polymer and the metal electrode, and in the bulk of the polymer film. The transfer of charge carriers in the polymer layers 
are mainly determined by the process of hopping between localized molecular states. The simplest form of the hopping 
conductivity is realized in the transitions between the nearest neighboring centers. The features of the hopping conductivity 
with a variable hopping and hopping transport in centers with a Gaussian distribution of energy levels were analyzed. The 
model of polarons and the dependence of the mobility of polarons on the temperature and field were reviewed. It was shown, 
that, the field dependence of the Poole-Frenkel has a place for both pure charge transfer and the polaron transfer. To describe 
the charge transport across the border between the polymer and the electrode in sufficiently strong electric fields the models 
of Fowler-Nordheim tunneling and Richardson-Schottky thermionic emission were used.
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1. Introduction 

Electronic conductivity of organic molecular compounds 
differs from that of metal and inorganic semiconductors 
such as silicon and germanium. The well-known band 
theory of crystal lattice is a good base to understand the 
conduction mechanism of crystalline molecular solids and 
conjugated and unconjugated polymers. At the same time, 
the applicability of the ideal elongated chain model to 
materials with a complicated morphology is naturally limited. 
Even within the frames of idealized model, the inorganic 
conductors and semi-conductors differ considerably from 
polymers. Besides, in polymers the screening of interactions 
between charge carriers is less; electron-electron and 
electron-hole interactions play an important role causing 
considerable localization of electron states as compared with 
inorganic materials [1]. Absence of macroscopic ordering 
means inadequacy of band conduction model to describe 
electron conductivity of bulk polymer materials, though it 
can be used to a limited extent when studying conduction 
process.

In amorphous layers of thin organic films the terms 
“conduction band’ and “valence band” are usually replaced by 
the terms of the lowest unoccupied molecular orbital (LUMO) 
and the highest occupied molecular orbital (HOMO), 
respectively. The states density is mainly described  quite 
satisfactorily by Gaussian distribution of localized molecular 
orbitals of individual molecules as it is shown in the fig. 1 [2].

Transport of charge carriers in these amorphous layers is 
determined primarily by hopping process between localized 
molecular states. Therefore, the difference between the trap 
state and regular transport state is not evident. The solution 
can be found in transport energy concept initially introduced 
by Monro [3] for amorphous inorganic semi-conductors and 
later extended for amorphous organic semi-conductors [4, 
5]. This concept is based on the following statistic principle: 
a carrier located in a deep state tail most likely will transfer to 
the state with energy Et independently of its initial energy in 
the states’ tail (fig.2).

Value Et is called a transport energy or release energy  as 
this value describes the level from which a trapped carrier is 
released to move to a next center.

Fig. 1. HOMO and LUMO levels distribution in amorphous organic 
thin films.

Fig. 2. Transport level of energy Et.
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Transport energy has only statistic meaning, but its role is 
similar to that of band edge or mobility border in inorganic 
semi-conductors. 

Therefore, each state below the transport energy is a trap 
one while the states above transport energy are the usual 
transport states though all the states are localized. However, 
energy of transfer is a function of temperature. A state acting 
as a trap one at ambient temperature can become a state of 
transfer at the lower temperatures. In addition ot the trap 
states located in level distribution tail near HOMO/LUMO, 
there can be additional trap states at discrete values of energy 
with arbitrary energy distribution within the values below the 
transport energy (fig.2).

2. Charge carrier transportation 
across the border

Depending on the size of barrier on the interface of electrode 
with polymer film electric current flowing through the 
sample can be of injection type, i.e. limited by space charge.

In this case one of the electrodes should be ohmic one, 
i.e. it should provide more charge carriers in time unit than 
the sample is able to transport not breaking the Poisson’s law. 
Otherwise, charge carrier transportation across the interface 
will be limited by the barrier.

Tunneling model of Fowler-Nordheim (FN) and 
Richardson-Schottky (RSch) thermionic emission model [6] 
are usually used to study injection in dielectric in a rather 
strong electric fields.

A thermal electron emission from hot metal is called 
thermionic emission. Electrons emission from metal contact 
into vacuum or dielectric conduction band by their thermal 
transportation through potential barrier in electric field is 
called Schottky emission. Taking into account image forces 
in parabolic approximation it is possible to get Richardson-
Schottky equation for current density [6]:

where J is a current density, А* is the Richardson constant,  
е is an electron charge, φB is a barrier height, F is a field density, 
ε is a dielectric permeability of a sample, ε0 is the electric 
constant, k is the Boltzmann constant, Т is temperature. 
The barrier decrease caused by the external field influence 
amounts to: 0eF / 4 .∆ϕ = πεε

An important assumption in RSch model is that electron 
can be taken out from metal once it gets enough heat 
energy to cross the potential barrier which is formed by 
a superimposition of the external field and images forces. 
Neither tunneling nor inelastic scattering of charge carrier 
before potential barrier crossing are not considered.

In the electric field between 105 V/cm and 2·106 V/cm 
barrier decrease in a dielectric with the dielectric constant 3.5 
is equal to 0.06 – 0.28 eV, maximum of electrostatic potential 
is 3 – 0.7 nm from the interface [7]. Therefore the barrier 
height decrease is comparable to the potential barrier height 
itself, so neglecting the tunneling is not valid.

From the other hand, RSch model usage suffers from a 

disregard of inelastic scattering of charge carriers which is 
important for organic substances where transportation is a 
noncoherent process and mean free path is comparable to the 
intermolecular distance 1 nm.

According to the quantum theory, electron wave function 
within dielectric area located between two electrodes is 
different from zero. Wave function exponentially decreases 
with a distance into the barrier. If the barrier is very narrow, 
the probability to pass through the barrier for an electron 
has a finite value depending on the height and form of the 
potential barrier. Tunneling (autoemission) can be observed 
in the case of a wide barrier if its effective thickness decreases 
under the influence of a strong electric field.

In FN model image forces are disregarded and the 
tunneling of electrons from metal through a triangle barrier 
to free states of conduction area is considered. When the field 
intensity increases, the height and width of potential barrier 
decreases to such an extent that a new physical effect appears 
and becomes prevailing: quantum mechanic tunneling of 
electron across the potential barrier.

Current caused by the tunnel emission facilitated by a 
field is described by Fowler-Nordheim equation. In this case 
the current density can be described by the expression [8]:

which is independent from temperature. Here, meff is the 
effective mass of a charge carrier in dielectric, ħ is the Planck 
constant. 

In spite of disadvantages of both FN and RSch concepts, 
they have been applied successfully to describe injections of 
a charge carrier in organic light emitting diodes.  E.g., FN 
model was applied to give reasonable values for the barrier 
height and to take into account independence of temperature 
characteristic J(F) in strong fields [9].

It is necessary to mention that electric current values 
are less than expected one based on equation (2) [10]. It was 
explained by the carriers back flow to electrode, though it is 
difficult to understand why the carriers capable to go beyond 
the potential barrier area should come back to the electrode 
not being held by the energy barrier they have just passed 
through.

Thus, thermionic emission prevails at the high 
temperatures and relatively low electric fields. Current caused 
by tunnel emission takes place at low temperatures and high 
values of electric fields.

Fig.3 shows different types of carriers emission through 
the interface metal-polymer including hybrid models.

M. Abkowitz and others [11] developed an alternative 
model based on thermally activated tunneling where hopping 
movement of a carrier in dielectric is taken into account, but 
Coulomb potential and energy disorder of the system are 
disregarded.

They showed that experimental curves J(F) could be 
specified by a reasonable combination of parameters. A more 
complicated version of this injection concept was presented 
using Monte-Carlo simulation methods by Garlstein and 
Conwell [12]. Their model takes into account energy 
disorders of any amorphous hopping systems and image 
forces potential. It allows one to evaluate the probability 

( )B 0* 2
e eF / 4

J A T exp , (1)
kT
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for the carrier to avoid a pair recombination with carrier 
image excluding the initial injection process. The complete 
description of the field and temperature dependence for 
injection current should evidently study the field and 
temperature dependences of primary injection process. It is 
necessary to study the following arbitrary motion of carriers 
taking into account the external field and images forces 
taking due care because of specific features of charge carrier 
motion in  arbitrary media.

This problem was analyzed by Arkhipov and others [13] 
and dependence of injection current on electric field value, 
temperature and adherence of two hopping centers was 
obtained.

3. Hopping transport of charge carriers

Due to weak intermolecular binding, valence and conduction 
bands of molecular crystals are narrow, usually 0.1eV or less. 
As a result, the mean free path of a charge carrier between 
two consecutive acts of phonon scattering has an order of the 
crystal lattice constant, at least, at the ambient temperature.

Taking into account disorder present in amorphous 
organic solids, e.g. in polymers,  it is necessary to admit that 
elementary phenomenon of transport in these systems is a 
hop of a charge carrier between adjacent transport molecules 
or segments of the main element in polymer chain hereinafter 
called transport centers.

In chemical terms, this is a reduction-oxidation process 
including chemically identical but physically different 
components. Dependence of charge carrier mobility on 
temperature and electric field should reflect the dependence 
of this elementary transfer on T and F. Its activation 
energy will be a sum of intermolecular and intramolecular 
contributions. It is a result of physical nonequivalence of 
hopping centers due to local disorder and it is a specific 
feature of any amorphous organic solid. The latter occurs due 
to changes of molecular surroundings by adding / deletion of 
an electron to the transport center. A charge transfer requires 
concurrent molecular deformation, i.e. polaron transfer. 
Considerable difference between transfer models is related to 
a relative value of both contributions.

The hopping model supposes a weak connection between 
a charge carrier and intermolecular and intramolecular 
modes, activation energy of transfer reflects statistic energy 

disorder of the hopping centers. From the other hand, 
polaron model considers disorder energy to be insignificant 
as compared with molecular deformation energy.

Usually movement of the carriers in amorphous polymers 
is an activated process. As transfer time can’t be measured 
accurately or even distinguished, the direct measurements of 
mobility are not possible.

To understand the process of macroscopic charge transfer 
in these substances it seems to be useful to study and classify 
the main transfer mechanisms of activation character.

Dispersion jumps [14-15].  This process is a tunneling 
of the carriers between two appropriate points and its 
probability depends on overlap of wave functions of initial 
and final states.

Activation energy origin is connected with some 
potential barrier between these two states, this barrier is to 
be overpassed by the carrier while jumping. This process is 
similar to transfer of small radius polarons with phonons.

Trap-controlled jumps [16]. In this process a carrier during 
its chaotic walk meets the trap and remains inside until it 
gets enough activation energy to be released. Energy should 
exceed the value required for small radius polarons jumps, 
total activation energy of transfer should include energy to 
escape from the trap and jump energy.

Multiple trapping [17]. Conductive area and trapping 
centers are necessary conditions for this process. If these 
centers are located at different depth, transfer is determined 
by the carriers trapping and releasing kinetics, while free 
carriers movement is typical for zone mechanism. The 
simplest type of hopping conductivity is realized at transfers 
between the nearest adjacent centers. Density state in zone 
of localized levels is presented by the curve with a maximum 
at energy εm. Most probably, initial and final jump points 
have the energy close to maximum of state density providing 
they are the nearest neighbors. To realize the jump the final 
point should be free. The probability of this event depends on 
distance to Fermi-level and proportional to [18]

Taking into account the factor (3), a complete expression 
of specific conductivity considering percolation radius rc in 
the system of random points with N concentration can be 
written as:

To realize the conductivity by jumps to the nearest 
centers it is necessary to have many pairs of the nearest 
neighbours where one center is free. If the temperature is 
decreased to kT<<|εF — εm|, there will be too little free places 
among the nearest neighbours, the major part of which have 
εm, energy and jumps to the nearest centers will stop. Then 
jumps between centers with some ε-region energy of Fermi 
level with definite availability of free places should become 
considerable. The issue is how close these centers are to each 
other. In this case the conductivity is as follows:

Fig. 3. Different types of emission of carriers through interface metal-
polymer.
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Value σ0 depends on temperature by power law, but 
usually this dependence is disregarded.

As average jump length ‹r› depends on Т, it is possible 
to speak about hopping conductivity with a variable length 
of jump. The power ¼ in exponent (6) can be only in three-
dimensional dielectric [19]. For a thin film a reduction 
of dimensionality of system down to two occurs that is 
why the resistance and temperature relation now has the 
following form [20]:

4. Hopping transport with Gaussian 
distribution of energy levels

In the works [21-23] the following model of the charge carrier 
transfer is developed in details. Organic matrix is modeled by 
a cubic lattice with an edge а in each site of which a transport 
center is located. Position of energy level  ε, which takes a 
part in charge transport is an independent random value due 
to a random non-correlated influence of surroundings. The 
relevant state density is described by a Gaussian distribution:

This choice of ρ(ε) is explained by an experimentally 
found Gaussian form of absorption bands and fluorescence 
of many polymers. It means that the total energy of 
interaction between center and surroundings is a sum of a 
big number of independent items, probabilities densities of 
which do not differ considerably. The equation suggested 
by Miller and Abrahams [24] is chosen for jumps frequency 
between centers i and j:

where ν0 is a pre-exponential frequency factor, γ is a wave 
function damping coefficient, rij is a distance between 
centers equal according to the subject model to а. 

Function ρ(ε) describes the effects of energy disorder. 
Geometrical disorder can be described phenomenologically 
assuming γa a random value. Concrete calculations within 
the frames of the described model were successfully carried 
out only with a help of numerical simulations by Monte-
Carlo method. The field dependence of mobility has an S- 
shape character, its medium part approximately corresponds 
to a linear dependence of lnμ оn F1/2. However, this region is 
considerably narrower than that in the experiment. Taking 
into account the geometric disorder within the frames of 
the described model results in interesting consequences – 
mobility becomes a nonmonotonic function of the field, 
initially decreasing and then increasing with the field 
increase [23]. This behavior well corresponds to the one 
observed in the experiments of Borsenberger [25] and 
Abkowitz [26]. 

5. Polaron transport

Interaction between electrons and ions of lattice is an 
electrostatic one, it causes local deformation of a lattice. The 

electron is accompanied by this deformation during its move 
across the lattice. A combination of an electron and a stress 
field of the lattice created by it is called a polaron. There are 
big and small polarons. The electrons of big polarons move 
in energy zone but they have enlarged mass; these are the 
polarons which have been studied above. An electron of a 
small polaron [27] spends the majority of time in a bound 
state captured by some separate ion. At a high temperature 
this electron tunnels slowly through a crystal as if it were in a 
part of energy zone relevant to a big effective mass.

The works of Schein and his colleagues [28, 29] develop 
an idea that polarons of a small radius are the charge carriers 
in disordered organic matrixes. In other words, polaron 
is a bound state of a charge carrier and vibrational mode 
(intramolecular or phonons) which moves in a solid as a single 
whole. The above mentioned works consider the polaron 
to be formed when a carrier interacts with intramolecular 
vibrational mode. Within the weak external field the polaron 
mobility can be written as follows:

where Р is a probability of a charge carrier transfer from point 
to point when energy levels at these points are coincided, ω is 
a frequency of vibrational mode, Ер polaron binding energy, ρ 
is an average distance between points (transport centers), J is 
a two-center resonance integral. Function Р is complicated 
but it can be written rather simply in two extreme cases — big 
and small J.

In the first (adiabatic) regime Р = 1, in the second 
(nonadiabatic) regime P ∝  J2 ∝  exp(-2γρ). As it was 
mentioned in the work [28], from the expression (9) it follows 
that in the first case activation energy isincreased with an 
average distance between centers (as J is decreased), in the 
second case it doesn’t depend on distance (J is insignificant). 

Importance of polaron effects for the charge carriers 
transfer in organic amorphous materials is actively discussed, 
because the purely polaron model is not able to describe 
charge transfer due to the large values of such parameters as 
polaron activation energy Ea = Ep/2 and transfer integral J. 
However, for some organic systems deformation energy can 
be compared with disorder energy, therefore, description of 
charge carriers transfer in such materials should take into 
account superposition of disorder influence and polaron 
effects.

In case of polaron hopping transport in nonadiabatic 
approximation the jump speed of a small radius polaron is 
given according to Marcus model [30, 31]:

Recently the authors of [32] formulated a theory of 
effective medium approximation (EMA) to describe polaron 
transfer in amorphous organic system using (10). After taking 
into account the correlation effect the result corresponds 
to the Poole-Frenkel dependence               . The presented 
theory suggests the test which can be used to differentiate 
polaron transport from non polaron one [32]. It appears 
that the dependence of mobility on the electric field changes 
from a nearly linear one to Т-3/2 in the case of the non polaron 
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transport, when Miller-Abrahams formalism is applicable, 
and deviates considerably from the linearity to Т-3/2 for the 
polaron transport. Therefore, the existence of such deviations 
proves the necessity to account for polarons in the studied 
systems. 

Besides, the presented model of polarons can explain 
quantitatively the observed dependencies of polaron mobility 
on temperature and field suggesting reasonable values for 
polaron binding energy and transfer integral. It is important 
that field dependence of Poole-Frenkel ln Fµ ∝  takes place 
for both the pure charge transport and polaron one providing 
that energy correlation effects are taken into account. 
Temperature dependence of drift mobility is super-Arrhenius 
one, 2ln 1/ Tµ ∝ , and can be observed for polaron transport 
providing that activation energy of polaron is relatively small. 
The results of presented EMA theory are in a good agreement 
with experimental results obtained for some σ-conjugated 
polysilanes  where the importance of polaron effects is firmly 
established. 

Is it possible to state that charge transport in disordered 
organic solids is driven by disorder or small radius polarons 
[33, 34]? No doubt, a moving charge carrier always causes 
structure deformations of medium. The question concerns the 
quanitity of the effect.

The model based only on polaron effects is not capable to 
describe the charge transport as required parameters appear 
physically not reasonable. In adiabatic approximation activation 
energy for polaron transport Δ = Ep/2 – J, where J is electron 
integral of transfer [35]. Therefore, if Δ is changed between 
0.3 and 0.6 eV, then Ep ≈ 0.6-1.2 eV, what is inacceptably big 
and contradicts both quantum chemical calculations [36] and 
theoretical studies of charge transport in molecular crystals.

In the final part of the work we’ll consider the results of 
studies of the mechanisms of the charge carriers transfer in 
thin films of polydiphenylenephthalide (PDPh) from the class 
of polyarylenephthalides. One of the interesting PDPh film 
properties is a transfer from dielectric state to highly conductive 
state (HCS).A possible explanation of the transfer to HCS can 
be an appearance of a narrow zone near the middle of a band 
gap of the polimer through which a coherent charge carrier 
occurs. A probability of such a zone appearance is proved 
by the results of [37-39]. Registration of negative differential 
resistance of N-type [40] is explained by the presence of such 
a zone.

In PDPh films with a wide band gap a low-barrier Schottky 
effect can be observed [41]. This effect is explained by a 
barrier which forms at the interface metal-polymer, so that its 
height Δφ is determined by a difference between the energy 
of Fermi-level of contacting electrode and energy of trapping 
level formed near the mid of polymer band gap. In [42-43] 
the peculiarities of voltage-current characteristics are studied 
within the frames of injection theory of currents limited by 
spatial charge. Nanostructured heterointerfaces created on 
the base of silicon and PDPh films are shown to be rather 
promising to control output value of current.

Peculiarities of charge transfer in film samples with a 
structure semi-conductor/PDPh/metal are explained  within 
the frames of three models: hopping transport on trapping 
levels, Schottky emission and field tunnel emission [44].

Time-of-flight method showed that dispersion transport 

takes place in film samples with a thickness exceeding critical 
one, and when mechanic pressure is applied charge carriers 
are not changed as it occurs at thickness less or close to critical 
one, holes remain the main charge carriers [45-47].

The principles of formation of nanostructured organic-
organic interface with increased conductivity at two polymer 
films interface are described in [48-51]. It is established that 
conductivity is determined by the type and degree of external 
influence. It is shown that development of chemical sensors, 
e.g., relative humidity sensors, ethyl alcohol vapors pressure 
sensors and pH indicators is possible on the base of this 
interface [52].
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