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1. Introduction

The present review is devoted to the limiting case of 
martensitic transformations (MT) proceeding with strongly 
marked signs of first-order transitions between lattice 
states with symmetries not connected by a co-subordinate 
relationship. A classic example is the γ — α MT in iron-based 
alloys. The progress achieved to date allows to speak about 
constructing a dynamic theory of lamellar crystal formation 
with a supersonic rate in original austenite regions, exceeding 
a certain critical size and free from defects. Although the 
relevant information is presented in monographs [1—3], 
available in open access, it is useful to provide, for beginning 
researchers, a brief summary of the ideology that is the essence 
of the paradigm, significantly differing from the traditional 
versions based on the quasi-equilibrium approach. In other 
words, our aim is to outline the shortest quality path to 
understanding the physical mechanism for realization of MT, 
taking the reader to the forefront of the research, avoiding 
a retrospective coverage of the issue which is of interest on 
its own, but is poorly compatible with a concise rendering. 
Nevertheless, it is impossible not to note that the research 
topic of MT entered the mainstream of modern science after 
the work [4] where the diffusionless character of MT was 
established (see also [5]).

It is worth reminding that the value of any limiting 
case is the possibility of a noticeable simplification of a 
description, which is important not only from the physical 
point of view, as it allows to focus attention on the dominant 
factors, but also in the methodological aspect, as it opens up 
an opportunity for formulation of the simplest mathematical 
model reflecting, nevertheless, the most important features of 
a complex picture.

For instance, in our case a comprehension of the fact 
of the supersonic rate of crystal growth leads to serious 

simplifications of the description, since it allows for 
dissociation from the models of interphase boundary mobility 
based on the notions of moving dislocations1, focusing our 
attention exclusively on the wave control of the process of 
martensite crystal growth.

A discussion of the results of the measurements of the 
martensite crystal growth rate during γ — α MT, conducted 
in [6,7], are presented in item 1.2 of the monograph [1]. The 
results presented in [8] also agree with the data given in [6,7].

2. The basic models of heterogeneous nucleation 
and wave growth of martensite crystals

A high growth rate, in accordance to the logic of the study, 
immediately brings up a question about the specifics of the 
initial state of transformation. Indeed, the primal character 
of transformation dictates the necessity of a heterogeneous 
nucleation, i.e. an explicit participation of defects, and 
the wave mechanism of growth demands to allow for the 
emergence of the initially excited (vibrational) state of 
the lattice in the elastic field of a defect, from which the 
controlling wave process (CWP) starts. It is apparent that 
the construction of a quasi-equilibrium nucleus, with the 
help of isolation of a certain region of the parent phase 
with configured sets of dislocation loops, is not required 
here, which is again an evident simplification in the task 
formulation, although it requires knowledge of the elastic 
fields typical for the parent phase of defects (mainly, 
dislocations). But the calculations of these fields for actual 
anisotropic crystals are to a great extent standardized and 

1  Models with “transformation dislocations” are acceptable for the 
description of another limiting case – the thermoelastic realization 
of MT, close to second-order transitions.
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therefore do not cause any significant difficulty. Note should 
be made that a search for special defect configurations (as 
nucleation regions) has not yielded any positive results, 
while the process of initiating a fast growth is typical for 
both single crystals (nevertheless, containing dislocations) 
and large austenite grains. Therefore it seems very probable 
that individual dislocations (typical for the lattice symmetry 
of the parent phase) play the role of dislocation nucleation 
centers (DNC) that distort with their elastic fields the 
symmetry of the parent phase, marking the regions most 
favorable for the emergence of the initially excited state. 
This qualitative motivation leads to the scheme displayed in 
Fig.1 presenting a section (with sizes d1,2) of a strategically 
deformed volume in the form of a rectangular parallelepiped 
built on its own vectors ξi of the elastic strain field tensor of 
the DNC.

Notably, there are angle ranges ∆Θ (in the vicinity of a 
certain value Θ0) with strains of the opposite sign along the 
axes ξ1,2 orthogonal to the largest edge ξ3, along which the 
strain is close to the zero value. The corresponding main 
values of the strain tensor in the nucleation region not only 
satisfy the condition of plane strain with a pair of invariant 
(slightly distorted) planes:

		      ε1>0,   ε2<0,   ε3≈0,	 (1)

but also ε1 and |ε2| are close to the maximum values ε1 (Θ0), 
|ε2(Θ0)| (the extrema are searched by the angle variable Θ at a 
certain fixed distance r to the dislocation line). Consequently, in 
the region of nucleation the defect’s elastic field reduces in the 
maximum degree the energy barrier for the onset of plane strain 
with an invariant (at ε3=0) or slightly distorted (at ε3≈0) plane.

It is clear that the elastic field of the defect in the 
parallelepiped’s section (on scale d) is approximately uniform, 
in case the following condition is fulfilled:

			   d / r ≤ 0.1. 	 (2)

Suppose that the average distance between the dislocations 
is equal to L.  Then the influence of other dislocations can be 
neglected, if

			   r~0.1L			   (3)

It follows from (2) and (3) that

			   d~10-2L, 	 (4)

i.e. between the spatial scales d and L there is a relation, 
important for understanding the observed spatial effects (see 
the discussion in [3]). It is important that during the transition 
to fine grains the role of L is played by the grain diameter D.

It is natural to believe that the role of the volume element 
in which the transition of an atom collective through 
the energy barrier (with energy release and excitation of 
vibrations) is realized, is played by a three-dimensional 
cell in the form of an elongated rectangular parallelepiped. 
Its faces vibrate in pairs in the opposite phase, stimulating 
threshold deformation of the tension-compression type 
in mutually orthogonal directions coinciding with the 
directions of propagation of wave beams radiated by the 
vibrating parallelepiped. The lattice sequentially loses its 
stability, forming a plate-like region there, where wave beams 
superimpose with atomic displacement fields favorable for 
realization of threshold deformation (see Fig.2).

The formation of the plate-like prototype of a martensite 
crystal can be naturally interpreted as the movement of the 
parallelepiped with a velocity v, representing the vector sum 
of the velocities ν1 and ν2 of the wave beams. Since the energy 
release required for the autocatalytic feeding of a wave takes 
place only in the volume that has experienced threshold 
deformation, it is the supersonic rate ν that becomes the 
actual crystal growth rate.  

Consequently, a synthesis of the concepts of heterogeneous 
nucleation and wave growth is achieved if we consider that 
the wave normals n1 and n2 of the wave beams which describe 
in the superposition region the tensile strain (ε1>0) and the 
compression strain (ε2<0 ), respectively, are collinear to their 
own vectors ξi (i=1,2) of the strain tensor of the defect elastic 
field in the nucleation region:

	    n1||ξ1,   n2||ξ2,    n1^ n2   | ni|=|ξi|=1 	 (5)

Hence, the CWP inherits the information about the directions 
of the principal strain axes. It is easy to show [1] that the 
normal Nw to the habit plane, connected with the propagation 
of the CWP, is given by the kinematic relation:

	    Nw|| n2-n1æ, 	    æ=(ν2/ν1),		  (6)

Fig. 1. Localization region of the initially excited state in the elastic 
field of a separate dislocation: the correlation between the scales r 
and d.

Fig. 2. Wave model for control of martensite crystal growth.
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where ν1 and ν2 are the velocity moduli of wave propagation 
in the directions n1 and n2. On the other hand, in the case 
of uniform plane deformation of tension-compression, the 
normals to invariant planes take the following form:

		           Nd=ξ2±kξ1		  (7)
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Since the CWP carries strain with an invariant plane, it is 
natural to believe that there takes place a coincidence of the 
kinematic and dynamic descriptions of the habit plane during 
the CWP propagation, i.e. formulas (6) and (7) describe the 
same habitus if the values of εi in (8) correspond to the threshold 
values. Then, taking into account (5), the following important 
condition is obtained:

                                    æ=k,		  (9)

describing the relation between strains and wave velocities 
that exists during the CWP propagation.

It has been established experimentally that the 
application of external elastic stresses considerably displaces 
the temperature Ms of the start of MT. This means that the 
threshold strains εth lie in the elastic range of values. Since 
εth<<1, condition (9) takes the following form:
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where the velocities ν2 and ν1 can be calculated with the help 
of the Christoffel equation [9], using the elasticity moduli of 
the initial crystal lattice (preferably at the temperature Мs).

Let us make a few remarks. 
1.  Taking into consideration the principal significance 

of the notions of the emergence of the initially excited 
state, experiments were performed [10—13] on its physical 
modeling. Laser pulses (with a duration of 20 ps) were used, 
with a close to linear shape of the trail affecting the surface of 
specially oriented single crystals. The results confirmed the 
expected initiation of martensite crystal growth.

2. The described algorithm for calculation of habit plane 
orientations allows to identify the DNC of specific martensite 
crystals on the basis of the requirement for the estimated 
values of Nw to coincide with the observed ones.

3. The smallness of threshold strains allows to use in the 
analytical description the harmonic form of recording the 
displacements (and strains) of the lattice in the localization 
region of the initially excited state (see [14] and chapter 
2 in [2]). Such an approximation makes it possible, at the 
prescribed values of εth, to find easily the transverse size 
d1,2 of the localization region of the initially excited state as 
quite definite fractions of half-waves λ1,2 / 2 correlated to wave 
beams being part of the CWP (the inequality d1,2 < λ1,2 / 2 must 
necessarily be fulfilled).

4.  The simplest system of wave equations reflecting the 
interaction between two beams with orthogonal wave vectors 
(along x- and y-directions) is also discussed in [2] and [14]. 
In the context of the strains ε1,2 in x- and y-directions this 
system has the following form:
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interaction is reflected by the introduction of the “effective” 
wave attenuations b1,2. 

It should be taken into consideration that the parameters 
b1,2 are positive in the case of the absence of the amplification 
mechanism, but they satisfy the condition b1,2≤0 if the 
condition of wave generation in the region of application of 
controlling waves with the strains ε1>0 and ε2<0 is fulfilled. 
It is evident that the simplest case of the amplification and 
loss compensation corresponds to b1,2=0. In reality, there will 
be attenuation compensation only in the region of energy 
release, therefore the interaction of waves is reflected in 
system (11) through the dependencies of the coefficients 
b1,2 on the strains ε1,2. In the simplest case, it is convenient to 
present these dependencies in the following form:

bi(ε1, ε2)= æi(1-Θ(ε1-εth1)Θ(εth2-ε2)), i=1,2.	 (12)

In (12) the parameters æi>0 prescribe wave attenuation 
in the absence of amplification mechanisms, and Θ(ε) is the 
Heaviside step function:

		  0,  at 0,  
( )

1,  at 0.
ε <

θ ε =  ε >
 	

It is easy to see that, for instance, in the superposition 
region of tensile and compression strains, for which b1,2 are 
considered equal to zero, equations (11) are satisfied by the 
following solution 
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where ζ1=x-ν1t, ζ2=y-ν2t, and the function 
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describes the movement of the excited region with a velocity 
ν=ν1+ν2 in conformity with the pattern presented in Fig.2. 
Thus, the formalism of the Θ - functions appears to be 
exceptionally convenient for reflecting the essential non-
linearity allowing for isolation of the spatial domain of the 
lattice which loses its stability in the course of the CWP 
propagation.

3. The role of the electronic subsystem in 
explaining the observed features of MT

Marked signs of the first-order transition (considerable 
thermal and volume effects, as well as a large temperature 
hysteresis between the direct and inverse transformations) 
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indicate a significant deviation of the temperature Ms during 
cooling from the temperature T0 of phase equilibrium. 
Consequently, the process of crystal growth runs in 
clearly non-equilibrium conditions, and the parent phase 
itself, remaining metastably stable, represents an active 
medium able, due to the released energy, to maintain a 
certain threshold level of deformations carried by the 
CWP, sufficient for overcoming the interphase energy 
barrier. The notion of an active medium is in essence close 
to the ideology well developed for media able to generate 
a coherent electromagnetic radiation (the laser and maser 
mechanisms). 

In the context of the metallic systems representing 
interacting subsystems of electrons and ions, it becomes 
natural to consider a non-equilibrium electronic subsystem 
as a generator of ion displacement fields (during the 
transformation of a part of the released energy into the energy 
of controlling waves). Such a photon maser effect ensures 
support of the amplitude level of the controlling waves 
that emerged at the first stage. The idea of the possibility 
to associate the MT process with the photon maser effect 
(without an understanding of the electronic subsystem’s 
role) was first put forward in [15]. As demonstrated in [1], 
martensite crystal growth can be visually interpreted in the 
form of a switching wave, whose front has a vibrational 
structure playing a key role in controlling the rearrangement 
of the lattice which loses its stability in the region of the CWP 
front. In the case of transition metals (and alloys based on 
them), the presence of the gradients of chemical potential ▼μ 
and of temperature ▼T in the region of the CWP front provides 
for the existence of intensive electron streams. In the stream 
regime there are always pairs of inversely populated states. 
In the transition metals that have comparatively narrow 
energy bands (and, correspondingly, peaks of electronic state 
density), the numbers of pairs Reff of inversely populated 
states within the acceptable energy range ∆ in the vicinity of 
the Fermi level, satisfying the requirement of equidistance in 
terms of energy and quasi-momentum differences, may turn 
out to be sufficient for fulfilling the threshold conditions for 
wave generation: 

	 σ0>σth,		  σth=ħ2Gd æp/(W
2Reff),	 (15)

where σ0 is the initial inverse population proportional to 
▼μ and σth is the threshold value of the inverse population 
difference, ħ is the Planck constant, Gd and æp are, respectively, 
the attenuations of the generating d-electrons and generated 
phonons (measured in rad∙s-1), W is the matrix element of 
electron-phonons interaction. Realistic estimates of the 
parameters, presented in [1], demonstrate that fulfillment of 
(15) in iron-based alloys is possible only at ∆ ≈ 0.2 eV.

In its turn, the identification of the conditions for 
fulfillment of the threshold conditions of generation in a wide 
variation range of temperatures and concentrations of various 
alloying components of alloys, allows to set and solve the 
problem of the influence of an alloy’s chemical composition 
on the temperature Ms [1,3]. Here, information appears, 
supplemental to the thermodynamic analysis, opening up 
a possibility to interpret the temperature Ms as the most 
optimal one for realization of the process of generation (or at 

least amplification) of the controlling waves. Consequently, 
the cause for a significant deviation of Ms from T0 is clarified, 
and the deviation degree is specified.

A combined account of information on the optimal 
conditions for generation and the correlation of the 
characteristic spatial scales (4) allows to describe the size 
effect of the Ms dependence on the value of the defect-free 
austenite volume (in particular, on the grain diameter D). 
The central idea here is the need to take into account the 
contribution of additional scattering associated with the 
emergence of the initially excited state, into the complete 
attenuation of s-electrons G. Since the process of controlling 
wave generation takes place in the region of the CWP front 
with the transverse dimensions d1,2, the characteristic time τs 
for intersection of this region with s-electrons is expressed 
through their velocity νs: τs ≈ d1,2/νs. Then the estimate of the 
additional contribution into the attenuation can easily be 
found from the indeterminacy relation for energy and time. 
When taking into account the relation between the spatial 
scales (4), the contribution into the attenuation is associated 
with the size L. The population of d-states possessing their 
own small attenuation Gd and distributed in the energy 
range ∆ ≈ 0.2 eV in the vicinity of the Fermi level μ, is carried 
out owing to participation of strongly attenuating s-states, as 
intermediate ones. At the same time, the following relation 
is fulfilled 

		  G≡G(T, C, L)≈2|εd-μ|		  (16)

where |εd-μ| characterizes the energy of generating electrons, 
averaged in the range ∆. It is relation (16) that optimizes the 
connection between the physically meaningful parameters for 
effective generation of controlling waves in broad variation 
ranges of temperature and concentration. With account of 
(16), analytical dependencies on the physically meaningful 
parameters (including L or within D), of the optimal 
generation temperature, identifiable with temperature Ms, 
and the critical grain size Dс, below which MT is not realized 
down to the absolute zero temperatures, can be derived
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2(2 | | ( ))
s
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L dD
G C

ν
=

ε −µ −




	 (17)

In (17) the s-electron velocity νs ≈ 106 m/s, and G/C is the 
contribution of s-electrons into attenuation, conditioned by 
the scattering of an alloying element on ions, dependent on 
their concentration С. The value (L/D), according to (4), is 
about 102. Of principal interest is the conclusion about the 
existence of special concentrations C* of an alloying element, 
approach to which is accompanied by a growth in Dс and a 
decrease in Ms. Indeed, it follows from (17) that:

	 C→C* ,  	        ħ G(C)→2|εd-μ|,	 Dс →∞,	 (18)

while Ms→0 K is not dependent on the size D. Hence, relation 
(17) accounts for the existence, for alloying elements, of rigid 
concentration boundaries, the exceeding of which blocks the 
process of MT. It is useful to note that the size effect was first 
established in [16], and the data given in [17], in our opinion, 
demonstrate a tendency for Dс to grow when C→C*. 

As fundamental consequences (and applications) of the 
developed theory of the size effect, we should mention the 
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effect of destabilization with the strong magnetic field of 
an austenite preliminarily stabilized by grain refinement or 
severe plastic deformation [18], as well as the interpretation of 
the lowest temperature limit Mf for realization of MT and the 
evaluation of the martensite fraction formed during athermal 
macrokinetics of transformation (see chapter 6 in [3]). It 
is characteristic that the fraction of the formed martensite, 
which is a macroparameter, is evaluated without the use 
of thermodynamics. It should be noted that the effects of 
austenite destabilization due to an increase in the parameter 
|εd-μ| in the magnetic field, according to (17), exhibit 
themselves to the maximum extent for the concentrations С 
close to C*, when the critical value Dс is large and decreases 
sharply when a strong magnetic field is turned on. The 
experimental data [18] for alloys of various compositions are 
in agreement with this conclusion. 

Thus, an explicit account of the microscopic physical 
nature of a metallic medium experiencing a structural 
rearrangement in essentially non-equilibrium conditions 
allows to extract information inaccessible to other 
(phenomenological) approaches which do not take into 
account the system’s features that are fundamental for a 
complete description of a rich phenomenon.  

4. On the completeness degree of the 
description of MT morphological features 

Currently, the achieved completeness degree of the 
description of the observed MT features in the developed 
dynamic theory for γ — α MT in iron-based alloys (in the 
area of its applicability) is unprecedented as compared with 
the existing approaches. The dynamic theory is not inferior 
to them in terms of accuracy, even though these approaches 
were specifically focused on the interpretation of the 
observed important facts, but knowingly neglected all the 
rest of the MT features.

A characteristic example is the interpretation of the 
observed macroscopic morphological attributes of MT, to 
which refer the crystallographic orientations of habits and 
microshear, interphase orientation ratios. Let us remind that 
these attributes are connected with each other in a one-to-one 
manner, which testifies to the presence of a single mechanism for 
controlling the cooperative atom displacement and represents a 
«visiting card» of the martensitic reaction. It is appropriate to 
mention that among thousands of works devoted to study of 
the martensite morphology, the pioneering works in terms of 
defining the morphological attributes are [19—21], from which 
[21] stands out as the most complete. The interpretation of the 
observed morphological attributes in the framework of the 
crystal-geometric approach [22—25], in spite of a number of 
difficulties, remained for a long time the most precise «tool» in 
the arsenal of phenomenological calculations.

In the framework of the wave approach, special attention 
was paid to the development of the theory’s microscopic 
aspects and the description of the threshold processes, i.e. 
to strain levels of 10-4—10-3. Therefore, only the habit plane 
orientation was calculated using (6). For interpretation of the 
rest of the attributes, it was necessary to develop an algorithm 
for transition from threshold to final strains, which are two or 

three orders of magnitude larger than threshold ones. Such an 
algorithm was first developed in [26,27] for BCC-HCP MT. The 
main idea comes down to the statement: the relation between 
strains in the threshold regime practically does not change as 
the strains evolve from threshold to final values. This assertion 
can be viewed as a consequence of a high transformation 
rate and the absence of resistance from the lattice region 
that has lost its stability and has not yet reached a metastably 
stable state. But in the threshold regime the relation between 
strains, according to (10), is prescribed by the relation between 
controlling wave velocities, i.e., with a good accuracy, by the 
elastic constants of the parent phase. By virtue of the above 
stated specifics, the depth of control of the crystal formation 
process encompasses strains of up to 3 orders of magnitude 
(from the threshold to the final strain value). 

Thereafter a transition was made to final strains for 
both non-twinned [28] and twinned α–martensite [2]. The 
latter, most complicated, case required, on the one hand, an 
inclusion into the CWP of relatively short-wave longitudinal 
displacements, and on the other hand, an account of the 
quasi-longitudinality of long-wave displacements, whose 
wave vectors deviate from the symmetry axes, which leads 
to noticeable differences of the orientations of the principal 
axes of threshold strain tensors from the orientations 
typical for an approach of longitudinal waves. In addition, a 
mechanism was successfully established for the coordinated 
action of long-wave and short-wave displacements, closely 
connected with the condition of a periodic reproduction of 
the vibrating short-wave cell in the region of the CWP front. 
As a result, the match of the description of the data relating 
to the whole aggregate of the observed morphological 
attributes in the dynamic theory turned out to be at least not 
worse that in the crystal-geometric approach.  A number of 
additional conclusions were obtained as well, allowing for an 
experimental validation.

On the basis of equation system (11) one can also 
naturally describe the change in the profiles of martensite 
crystals growing in a spatially non-uniform medium 
[29—31] by introducing the dependence of the “effective” 
wave attenuations of controlling waves on coordinates. At 
the present time, the achieved completeness degree of the 
characteristic morphology description allows to a great extent 
to reconstruct, on the basis of the morphological attributes, 
the dynamic pattern of MT development, i.e. to solve the 
inverse task. 

5. Concluding remarks

A concise summary of the principal ideas that have allowed 
to provide an full-fledged dynamic pattern of martensite 
crystal formation (during cooling or rapid heating) in the 
limiting case of supersonic growth, demonstrates that an MT 
can be described with an adequate identification of the role 
of any hierarchical level. In other words, taken into account 
are the features of electron and phonon band structures, 
as well as the meso- and macro-levels of morphological 
attribute formation. 

The obtained results testify about the finalization of 
an important stage in research, providing for the start of a 
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new stage with reliably established data. These data, in our 
opinion, include the model of the controlled wave process, 
which has a great potential for solution of problems of the 
interaction of a growing crystal with grain boundaries 
and crystals that emerged earlier. Some quality scenarios, 
which in fact represent a program of investigations, are set 
forth in item 3.2 of the monograph [3]. At the same time, 
of undoubtful interest is also the scenario of the appearance 
of the initially excited state when considering the interaction 
of atomic displacement fluctuations in the DNC field with a 
grain boundary possessing its own spectrum of vibrations 
(see item 3.5 in [3]). There appear additional opportunities 
for a detailed elaboration of the features of the electronic 
subsystem’s participation in MT in concentrated alloys. 
In particular, of great interest is a targeted experimental 
validation of the conclusions related to the existence of a 
critical grain size (17). 

When building the dynamic theory of polytypic MT, 
the scheme of the controlling wave process is drastically 
modified, reflecting the coordinated action of longitudinal 
and transverse waves with collinear wave vectors. The 
simplest example of such a rearrangement can be an FCC-
HCP MT, with its quality example presented in [32]. It should 
be kept in mind that when coordinating the modes (especially 
in the short-wave range) providing for the selection of a 
specific variant from the spectrum of possible polytypic MT, 
an explicit account of the lattice discreteness and an accurate 
description of the frequency spectrum become essential 
during the construction of non-linear CWP models. Here the 
accumulated experience (see, e.g., [33—36]) in studying non-
linear waves in discrete media is in full measure probable 
to be in demand, both within an analytical description and 
during dynamic modeling. 

The possibility of realization of MT in the nanocrystalline 
state constitutes a separate (in many ways, still ambiguous) 
area of research. Nevertheless, one can state that when the 
inequality D<Dc is fulfilled, the formation of crystals with a full 
set of morphological attributes is unlikely, although packets 
of twins are still possible (see chapter 7 in [3]). The role of 
relatively long-wave displacements prescribing the habits in 
the case of D>Dc, may pass to the grain’s own vibrations. The 
outcome of this type of scenario is schematically presented 
in Fig.3, where the critical grain size D´

ac for the MT variant 
called accommodative (D´

ac<Dc) is indicated approximately.

An interesting hypothetical possibility is related to 
the transformation of a grain as a whole. Indeed, an atom 
jump to new positions in the significant part of the grain 
volume (necessarily including its central part where strain 
is maximum) with excitation of vibrations can initiate the 
transformation of one of the adjacent grains. Formally, to such 
an excited state corresponds the identical order of the sizes L 
and d in (17). But then (in the absence of the dominating elastic 
field of an isolated dislocation) the critical size (17) decreases 
approximately by two orders of magnitude. It is interesting 
that at typical Dc values of around a micron (when C does not 
yet belong to the nearest vicinity of the special concentration 
C*) the condition L/d ~1 in (17) leads to a quite reasonable 
evaluation of the magnitude order of Dac~10 nm for the 
critical grain size in respect to the “single-crystal-to-single-
crystal”  rearrangement (the designation Dac is introduced to 
distinguish the critical size of a uniformly transformed grain 
from the size D`

ac for a grain with a microscopic twinned 
volume). Such rearrangements are probably observed, but at 
smaller, than in the case of the γ — α MT in iron-based alloys, 
levels of threshold and final strains. For instance, in the 
context of the B2-B19 transition in the Тi50Ni25Сu25 alloy the 
finishing single crystal rearrangements were recorded [37], 
even though without a clarification of the rearrangement 
mechanism details. According to the experimental data [37] 
on the dependence Ms(D), it follows that the transformation 
is blocked at grain sizes below ≈20 nm, to which Ms≈300К 
corresponds. Since the indicated value of Ms is still far from 
the absolute zero, the size ≈20 nm exceeds the critical value 
of Dac, for which, by definition, Ms(Dac)=0К is fulfilled. 
Nevertheless, not applying a strict processing of the data [37], 
we should note that Dac=20 nm can be obtained at L/d=2. It 
is evident that to such a choice of the L/d parameter value 
corresponds the transformation, as a whole one, of only the 
central grain part with a size d constituting a half of L (of the 
grain diameter Dac). This interpretation is in good agreement 
with the variant, mentioned in [3], of a transformation of 
the central part with a well expressed crystalline structure 
different from a less perfect structure of the near-boundary 
region, constituting a significant part of the grain volume (see 
Fig.4). 

Besides, as noted above, the largest strain during grain 
vibrations is attained in the grain center, turning into zero 
at its boundary. Consequently, fulfillment of the requirement 

Fig. 3. Schematic illustration of an accommodative martensitic 
transformation in three grains, reflecting the incompleteness 
of the grain volume transformation, a twinned character of the 
transformation and the misorientation of lattices in neighboring 
grains.

Fig. 4. Schematic illustration of an accommodative martensitic 
transformation in three nano-grains, reflecting the incompleteness 
of the grain volume transformation. The regions inside the grains 
that have transformed as a whole are conventionally marked by the 
black color.
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d<λ/2 (see item 2) is quite similar to the inequality d<L. Of 
course, without clearing up the mechanism of MT realization, 
it is premature to make any final statements, since a «single-
crystal-to-single-crystal» rearrangement is possible also due 
to a relatively slow movement of the interphase boundary in 
the case of a thermoelastic character of MT. It should also be 
noted that the thermoelastic growth during the movement of 
«transformation dislocations» can increase also the sizes of the 
central region with a diameter d, which at first experienced a 
jump-like rearrangement. Hence, hypothetically possible are 
at least three scenarios of single-crystal transformation of a 
significant grain volume fraction.

It is appropriate to mention that, alongside with 
spontaneously running MT (at a change in the parent phase 
temperature), one distinguishes also MT at an applied external 
elastic stress and MT running in the conditions of plastic flow. 
The corresponding transformation products are referred to as 
«stress-induced martensite» and «strain-induced martensite». 
The mechanism of «stress-induced martensite» formation is 
similar to «cooling-induced martensite», only the number 
of the observed crystallographic orientations (in accordance 
with the symmetry of the external stress field) is reduced, 
i.e. «stress-induced martensite» can form with a supersonic 
rate (in relation to longitudinal waves). The formation of 
«strain-induced martensite» crystals (as well as the shear 
bands) at moderate plastic strain rates, in our opinion, is 
quite adequately described in the framework of the cryston 
approach (see, for instance, [38—39]). In this case the rate 
of martensite crystal formation at the temperature Md>Ms  
should not exceed the velocity of transverse elastic waves. 
And if the external loading is effected through a shock wave, 
the limitation of “strain-induced” martensite crystal growth 
rate by the velocity of transverse waves is not obligatory. 

It should be stressed that the concept, introduced in the 
framework of a new paradigm, of the initially excited state 
(IES) turns out to be constructive, also during solution 
of problems related to account of the effect of the carbon 
diffusion process on the spatial scale d determining the 
transverse dimension of IES. 

For instance, the fulfillment of the condition of diffusion 
suppression on the scale d allows for a natural evaluation 
of the critical rates of austenite cooling [40] required for a 
transition to the lamellar morphology of martensite in some 
alloyed steels [41]. Conversely, the characteristic incubation 
times during isothermal holding of austenite (overcooled to 
the temperature Bs>Ms), preceding to a rapid growth of lath 
crystals of bainitic ferrite, are conditioned by carbon diffu-
sion on the spatial scale d. As a consequence, the order of 
the “effective” growth rate of a bainitic ferrite macroplate is 
prescribed by a correlation of the mean size of laths com-
prising the macroplate (and forming at a supersonic rate) to 
the mean incubation time between consecutive starts of lath 
crystal growth [42]. Thus, an additional wide scope is opened 
up for experimental and theoretical studies of structural 
transformation, combining the alternating stages of diffusion 
activity and diffusionless wave growth. 

Drawing up a summary, the authors would like to thank 
the journal’s editorial board for their offer to present a brief 
overview of our original results. We also hope that we have 
managed to set forth the concepts that transparently disclose 

the physical nature of the limiting case of martensite crystals’ 
supersonic formation, and attract attention to a number 
of tasks for initiation of new investigations in the topical 
thematic area of martensitic and bainitic transformations. 
Currently, the dynamic theory is actively developing, 
finding a successful application in all the above-mentioned 
areas (see, e.g., [43-51]). It is useful to bear in mind that in 
the methodological aspect this review should be viewed as 
mutually complementary with the reviews [52] and [53]. 

This work was performed with financial support from the 
RFBR (project no. 14-08-00734).
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