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A new mechanism of catalysis is discussed, which is based on the rate-promoting effect of large-amplitude anharmonic 
lattice vibrations, a.k.a. intrinsic localized modes or ‘discrete breathers’ (DBs), which can excite atoms at specific ‘active sites’ 
rather strongly, giving them energy far exceeding the energy of thermal vibrations for hundreds of oscillation periods. The 
DB-induced modulation of activation energies (free energy barriers between reactants and products) results in a drastic 
amplification of the reaction rates, which can be described by a simple analytical expression in the adiabatic limit. The striking 
site selectiveness of DB excitation dynamics in the presence of spatial (quenched) disorder makes these nonlinear vibrations 
viable candidates to play the role of ‘active modes’ in the catalytic process in various physical, chemical and biological systems.
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1. Introduction

Catalysis is at the heart of almost every chemical 
transformation process, and a detailed understanding of 
the active species and their related reaction mechanism is of 
great interest [1]. Three main types of catalytic processes can 
be defined: heterogeneous, homogeneous and enzymatic.

In heterogeneous catalysis, catalysts are in a different 
phase from reactants. Normally, heterogeneous catalysis 
involves gas (or liquid) molecules interacting with solid 
surfaces at an atomic or nanometer scale. It is characterized 
by the presence of ‘active sites’ on the catalyst surface. In 
homogeneous catalysis, catalysts are in the same phase 
as reactants (e.g. dissolved in water), while the enzymatic 
catalysis (a.k.a. biocatalysis) has an intermediate character, 
because although enzymes and reactants are in the same 
phase, they have ‘active sites’ in their structure.

In this paper, we are interested mainly in heterogeneous 
catalysis (HC) and enzymatic catalysis (EC), which require 
‘active sites’. An important parameter of their kinetics is 
the activation energy, i.e. the energy required to overcome 
the reaction barrier. The lower is the activation energy, the 
faster the reaction rate, and so a catalyst may be thought as 
a means to reduce somehow the activation energy. Recently, 
it has been shown [2—4] that in a crystalline matrix, the 
activation energy may be reduced at some sites due to large-
amplitude anharmonic lattice vibrations, a.k.a. intrinsic 
localized modes or ‘discrete breathers’ (DBs), that can be 
excited either thermally or by external driving, resulting in 
a drastic acceleration of the reaction rates. This allows one to 
suggest that DBs may be viable candidates for heterogeneous 
catalysts.

DBs are spatially localized large-amplitude vibrational 
modes in lattices that exhibit strong anharmonicity [5—8]. 

They have been successfully observed experimentally in 
various physical systems [8,9]. Studies of DBs in three-
dimensional crystals by means of molecular dynamics (MD) 
simulations using realistic interatomic potentials include ionic 
crystals with NaCl structure [10,11], diatomic A3B crystals 
[12], graphene [13], graphane [14], semiconductors [15], and 
metals [16,17]. DBs in biopolymers such as proteins have 
been studied using the coarse-grained nonlinear network 
model (NNM) [18] as well as using intramolecular potentials 
fitted to reproduce thermally driven folding and unfolding, 
and mechanical manipulation experiments [19,20].

Presently the interest of researchers has shifted to the 
study of the role of DBs in solid state physics and their catalytic 
impact on the reaction rates in solids [2—4,9,15—18] and on 
the biological functions of biopolymers [19,20]. An important 
question in this respect concerns the mechanism that links 
DBs with ‘active sites’ of chemical and biological reactions. 
This question is addressed in the present paper.

The paper is organized as follows. In the next section, a 
rate theory of DB excitation in perfects crystals is developed, 
and dependence of the DB formation rate on the energy gap 
required for their excitation is derived. In section 3, a model 
for amplification of reaction rates by DBs is developed���������. In sec-
tion 4, a striking site selectiveness of the DB formation in the 
presence of spatial disorder is discussed, which allows one to 
designate such sites as viable candidates for the ‘active sites’ in 
the catalytic process. The results are summarized in section 5.

2. DB excitation in crystals

The rate equation for the concentration of DBs with energy 
E, CDB(E,t) can be written as follows [2]
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where KB(E) is the rate of creation of DBs with energy  
E > Eminand τDB (E) is the DB lifetime. It has an obvious steady-
state solution (∂CDB(E, t)/∂t=0):

		  CDB(E) = KDB(E) τDB(E),	  (2)

In this section, we will consider breather formation by 
thermal activation in a crystal, and then discuss its application 
to disordered systems.

The exponential dependence of the concentration 
of high-energy light atoms on temperature in the MD 
simulations [12] gives evidence in favor of their thermal 
activation at a rate given by a typical Arrhenius law [7]
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where kB is the Boltzmann constant and ωDB is the natural 
(attempt) frequency that should be close to the DB frequency. 
The breather lifetime has been proposed in [7] to be 
determined by a phenomenological law based on two general 
principles. (i) DBs in a perfect crystal of two and three 
dimensions can be stable only above a given threshold energy 
Emin. (ii) The lifetime of a breather grows with its energy as 

 τDB= τ0
DB   ((E - Emin)- 1)z, with z and τ0

B   being constants. From 
this it follows that at thermal equilibrium the DB energy 
distribution function CDB(E,T) and the mean number of 
breathers per site nDB (T) are given by
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Equation (5) can be written as [2]
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It can be seen that the mean DB energy is higher than the  

average energy density (or temperature):
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For example, according to [12], one has Emin /kBT≈3 and 
<EB>≈5kBT, which gives us an estimate z≈1, i.e. for gap DBs 
in diatomic crystals, one has linear increase of the DB lifetime 
with energy. 

3. Breather-induced catalyzing mechanism

In order to develop a mechanism for DB-based catalysis, 
one needs to select a reaction model, such as the classical 
Kramers model [26]. The model considers a Brownian 
particle moving in a symmetric double-well potential U 
(x) (Fig.1), which is used very often as model for chemical 
reaction rate theory. The position of the particle represents 
the (free) energy of a system including the ‘reaction site’ in 
the phase space energy-reaction coordinate. The particle is 
subject to fluctuational forces induced by coupling to a heat 
bath. These forces cause transitions between the neighboring 
potential wells with a rate given by the celebrated Kramers 
rate, providing a theoretical basis for the Arrhenius law

	
( ) ( )0 0 0, expK BR E T E k T= −ω

 	 (8)

where ω0 is the natural attempt frequency (the curvature of 
the first energy minimum, i.e. the reactants) and E0 is the 
height of the potential barrier separating the two stable states, 
corresponding to the reactants and products. Fluctuational 
forces acting on a Brownian particle imitate the interaction 
of a reaction site with a ‘gas’ of phonons, i.e. small amplitude 
harmonic oscillations of atoms. 

A DB arising near the reaction site causes large-ampli-
tude, quasi-periodic atomic oscillations, which can be de-
scribed in terms of time-periodic modulations (driving) of the 
potential energy in the reaction described by Eq.(8). Namely, 
the double-well potential is tilted back and forth, thereby 
raising and lowering successively the potential barriers of the 
right and the left well, respectively, in an anti-phase manner 
(green and blue curves in Fig.1), such as 

( ) ( ) ( ) ( ), cosmU x t U x V x x t= − ⋅ Ω
,          (9)

Fig. 1. Sketch of the double-well potential U(x)=(1/4)bx4-(1/2)ax2 
(red curve) The minima are located at ±xm, where xm= (a / b)1 / 2. These 
are stable states before and after reaction, separated by a potential 
‘barrier’ with the height E0=a2 / 4b changing periodically within the 
V band. The green and blue curves represent the two maximally 
tilted energy landscapes.
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If the driving frequency is much lower than the natural 
frequency, Ω <<ω0, one can use an ‘adiabatic’ approximation. 
This seems to be a realistic assumption in general. In proteins, 
for example it was found that as Ω~ωDB~102cm-1 [18]. This has 
to be compared with typical Debye frequencies of the order of 
hundreds of K, i.e. ω0~ωDEBYE~104cm-1. �����������������������In this case, t��������he reac-
tion rate <RK>�����������������������������������������������, ���������������������������������������������averaged over times exceeding the driving pe-
riod, has been shown to increase with respect to the ground 
value RK according to the following expression [2]
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where the amplification factor I0(x) is simply the zero order, 
modified Bessel function of the first kind. Note that the am-
plification factor is determined by the ratio of the driving 
amplitude V to temperature, and it does not depend on the 
driving frequency or the barrier height.

In a more detailed study of periodically driven stochastic 
systems by Jung [27], the amplification factor in the adiabatic 
approximation is given by the following integral
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which also depends on the barrier height. However, this 
dependence is rather weak for driving amplitudes low com-
pared to the barrier height, as can be seen from Fig.2, which 
shows a comparison of the amplification factors given by  
Eqs.(10) and (11) at a typical value of the reaction barrier  
E0 = 1 eV.

One can see that, for V = 0.3 E0, the relative difference 
between Eq.(10) and (11) is within 30% and it becomes sig-
nificant only at V ~ E0. 

The adiabatic approximation is expected to be better in 
the case of soft type of nonlinearity (e.g. gap DBs in ionic 
crystals [10-12]) when the DB frequency is below the pho-
non band, and so one can expect the condition Ω <ω0 to be 
fulfilled a fortiori. On the other hand, in semiconductors and 
metals [13—15]  due to the hard type of non-linearity, the DB 
frequency lies above the Debye frequency (up to ~50%) and 
so the driving frequency can be slightly above the attempt 
frequency of the reaction. However, numerical results [27] 
show that the adiabatic approximation is only about 10% off 
the true result in the case Ω ≈ω0. Although the reaction am-
plification factor decreases with increasing driving frequen-
cy in this region, the reduction can be significant only for  
Ω >>ω0 while it has the same order of magnitude as the adia-
batic value for Ω ≥ω0, which is expected to be the case even 
for the hard type DBs.

Equations (10), (11) can be written in the following form

( )0 exp DB
K a bR E k T= −ω ,                (12)

where the DB-modified activation energy is given by
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It decreases with increasing driving amplitude and de-
creasing temperature as shown in Fig.3.

The main conclusion here is that the DB-induced periodic 
driving can amplify the average reaction rate drastically if the 
ratio V/kBT is high enough, as it is demonstrated in Fig.2. 
That is what is expected to be the case in the reaction site 
interacting with a nearby DB, since MD simulations using 
realistic interatomic potentials of various materials show that 
a typical deviation of the potential energy of atoms within a 
DB is of the order of several fractions of eV [10—16] . 

4. DBs in spatially disordered systems

In regular lattices, usually, a finite energy threshold has to 
be overcome in order to create a DB, which is reflected in 
Eqs.(6,7). Generally, depending on the spatial dimension 
and type of nonlinearity in the inter-particle potentials, a 
finite threshold may, or may not, exist [19]. In the context 
of spatially disordered systems, such a question has to be 
formulated not only in terms of the existence of a gap, but 
also in terms of its nature. It is important to stress that in an 
ordered system the bifurcation of the nonlinear edge mode 
marks a symmetry breaking, the emerging DB mode being 
exponentially localized, while the edge linear mode has an 
extended pattern. In topologically disordered systems, sites 

Fig. 2. Amplification factor for the escape rate of a thermalized 
Brownian particle from a periodically driven potential well at 
different temperatures and driving amplitudes at the reaction barrier 
E0 = 1 eV. (a) V = 0.3 eV; (b) T = 300 K.

b

a
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are not equivalent and band-edge modes are intrinsically 
localized in space, different modes having their largest 
displacement in different regions of the structure. Hence, 
different families of DBs may exist, localized at different sites 
and approaching different edge normal modes for vanishing 
amplitudes [18].

Thus, in contrast to perfect crystals, which produce DBs 
homogeneously, there is a striking site selectiveness of energy 
localization in the presence of spatial disorder, which will be 
demonstrated below in two examples.

5. Biopolymers

Biopolymers such as proteins and nucleic acids fold into 
complex three-dimensional structures (Fig.4), whose shape 
is strictly connected to their biological function. Proteins 
under physiological conditions are immersed in a thermal 
bath and therefore exhibit random thermal fluctuations. 
However, the biological function of a given biopolymer is 
often closely related to a particular kind of motion, typically 
involving large-amplitude low-frequency collective modes 
[21] and possibly also DB-like large-scale vibrations at higher 
frequencies [18,20].

While studying thermal excitation of DBs in protein 
clusters, Piazza and Sanejouand [18] have found that as a 
sheer consequence of disorder, a non-zero energy gap for 
exciting a DB at a given site may disappear at some special 
sites. At such sites, a small subset of linear edge modes acts 
as accumulation points, whereby DBs can be continued to 
arbitrary small energies, while unavoidably approaching one 
of such normal modes. Concerning the structure–dynamics 
relationship, a thorough analysis performed on a large dataset 
of enzyme structures has shown that the regions where DBs 
form easily (zero or small gaps) are generically the stiffest 
portions of the protein scaffold, characterized by large local 

Fig. 3. DB-modified activation energy vs. temperature (a) and 
driving amplitude (b) at the reaction barrier E0 = 1 eV. (a) V = 0.3 
eV; (b) T = 300 K.

b

a

Fig. 4. Structure of dimeric citrate synthase (PDB code 1IXE). Only 
α-carbons are shown, as spheres in a color scale corresponding to 
the crystallographic B-factors, from smaller (blue) to larger (red) 
fluctuations.

Fig. 5. DB energy gaps versus connectivity and clustering coefficient 
in HIV-1-protease (PDB 1A30) and Citrate Synthase (PDB 1IXE). 
The solid line in the top panel is a guide to the eye [19].
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connectivity and weak local clustering, as demonstrated in 
Figs.5 and 6. 

These results point to the existence of specific spatial 
selection rules that govern the range of existence/stability of 
a DB located at a given site. Remarkably, catalytic sites, where 
the reactant molecule binds to the enzyme, thus initiating 
the catalytic cycle, are generically found in highly stiff 
regions in the proteins [18,23]. These are precisely the hot-
spots where DB excitation is facilitated, as the gap vanishes 
around such sites and energy can be easily collected at [18] 
and/or funneled [24] to such regions by means on nonlinear 
mechanisms, that can further lead to the stabilization of such 
energetic fluctuations where needed over a large number of 
vibrational cycles. 

In view of the above discussion, it is thus tempting to 
speculate that DB excitation might play a pivotal role in 
promoting enzyme catalysis, as it has been already suggested 
[25].

6. Metal nanoparticles

Zhang and Douglas [28] provided another example of 
the role of disorder in energy localization mechanisms by 
investigating interfacial dynamics of Ni nanoparticles at high 
temperatures exceeding 1000 K. They discovered a string-like 

collective motion of surface atoms with energies in the eV 
range, i.e. exceeding the average lattice temperature by an 
order of magnitude (Fig.7). One of the most intriguing 
observations of this study was the propagation of breather-
like excitations along the strings, providing a possible 
mechanism for driving such correlated string-like atomic 
displacement movements. Note that regions of high mobility 
string-like motion are concentrated in filamentary grain 
boundary like domains that separate regions having relatively 
strong short-range order (Fig.8). The authors conclude that 
these dynamic structures might be of crucial significance in 
relation to catalysis.

7. Conclusions and outlook

Persistent spatially localized vibrations of nonlinear 
origin known as discrete breathers (DBs) can be excited 
generically in many-body nonlinear systems. Remarkably, 
in heterogeneous structures, DBs preferentially localize at 

Fig. 6. Distribution of connectivities and clustering coefficients of 
aminoacids for enzymes within the Catalytic Site Atlas database 
[22]. Comparison of the subset of residues involved in the catalytic 
activity with a subset of generic aminoacids, randomly selected 
within the database with the same proportion of chemical types as 
present in the catalytic sub-set.

Fig. 7. Atomic configuration of a Ni nanoparticle of 2899 atoms at 
T = 1000 K. The atoms are colored based on the potential energy 
and their size is proportional to Debye–Waller factor <u2>. Both 
potential energy and <u2> are time averaged over a 130 ps time 
window, corresponding to the time interval during which the strings 
show maximum length. Reproduced from Ref.[28] with permission 
from The Royal Society of Chemistry.

Fig. 8. Map of the local Debye–Waller factor showing the heterogeneity 
of the atomic mobility at a temperature of 1450 K. Regions of high 
mobility string-like motion are concentrated in filamentary grain 
boundary like domains that separate regions having relatively strong 
short-range order. Reproduced from Ref.[28] with permission from 
The Royal Society of Chemistry.
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sites with specific structural features, typically in the stiffest 
and most connected neighbourhoods. In enzymes these are 
invariably located in close contact with the active sites of the 
enzymes, where the catalytic action is initiated.

The striking site selectiveness of DB formation in the pres-
ence of spatial disorder may allow one in principle to iden-
tify specific hot-spot sites in heterogeneous structures to pre-
dict ‘active sites’ of catalytic process in various chemical [1], 
physical [4,17,28], biological [18,20,21] and even nuclear [29] 
systems. Remarkably, DBs may constitute a universal means 
for realizing efficient rate-promoting vibrations with fine-
tuned structural precision, able to lower free-energy barriers 
for chemical reactions by persistent modulation of the cor-
responding activation energies.  

An important consequence of our reasoning is that it may 
indicate a way of engineering the active environment based 
on MD modeling of DB excitation dynamics in nanoparticles 
and disordered structures of various types. 

In such systems, instead of thermodynamic consider-
ations leading to Eq.(3) one needs to consider the kinetics of 
normal mode instability leading to the DB creation. This fun-
damental problem extends beyond the purpose of the present 
communication and will be addressed elsewhere. 
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