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In the frame of the exactly integrable model of the 1D crystal — Hirota lattice model — the dynamics and interaction of the 
discrete breathers has been considered. These high-frequency localized nonlinear excitations elastically interact with each 
other and with such excitations as shock and linear waves. Using the nonlinear superposition formula the pair collision 
processes of the excitations are analytically described and explicit expressions for center-of-mass shifts of shock waves (kinks) 
and breathers, and phase shifts of oscillations of breathers and linear waves are discussed. The dynamics of the discrete 
breathers and kinks as the particle-like excitations of the Hirota lattice is described using the Hamiltonian formalism. The 
exact nonlinear periodic solutions describing the breathers and solitons superlattices in the Hirota lattice are analysed, and 
their stability boundaries are determined. The analogue of the discrete breather for the finite-size system is presented in terms 
of the elliptic Jacobi functions and it is shown that the excitation is detached from the branch of nonlinear homogenous 
antiphase oscillations in the bifurcation manner.
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1. The 1D Hirota lattice model

The exactly integrable models of the lattice systems are of 
significant importance for the solid state physics [1]. The 
equations describing these models have the exact solutions 
allowing to investigate analytically the dynamics of the lattice 
system and it is possible to obtain the analytic expressions for 
the main physical characteristics of the excitations such as 
energy, momentum, etc. The most known integrable lattices 
are the Toda lattice [2] and the system of Ablowitz-Ladik 
[3] which is the integrable analog of the discrete nonlinear 
Schrödinger equation. The Toda lattice equation describes 
the 1D anharmonic crystal with the exponential interaction 
force between the nearest neighbors. The Ablowitz-Ladik 
equation describes the system of parallel nonlinear optical 
waveguides but also it is widely used in the other areas 
because it has the exact integrable quantum analog [4]. In 
1973 Hirota [5] suggested the exactly integrable system 
of the nonlinear self-dual network (NSDN) equations for 
currents strengths and voltages describing the transmission 
line with the nonlinear inductances and capacitances. The 
NSDN equations are the nonlinear telegraph equations.

The mechanical analog of the nonlinear transmission line 
is a one-dimensional anharmonic chain of atoms, for which 
only the nearest neighbors interaction is taken into account 
[6,7].
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where Δn,n+1=tan [(π / 2) (un-un+1) / d0] and un is the displacement 
of the n-th atom in the chain. In the left part of (1) there is a 
kinetic term similar as for the modified discrete sine-Gordon 
model [8]. In the right side there are the nonlinear (tangential) 
interaction forces between the nearest neighbors. Equation 
(1) is called the Hirota lattice equation [6,7]. The Lagrangian 
function corresponding to the Eq.(1) has the form [6,7]: 
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For small values of the displacements and velocities of atoms 
the Hirota lattice model reduces to the β-Fermi-Pasta-Ulam 
(β-FPU) lattice model [9]. In [10] using the limiting phase 
trajectories concept and the notion of effective particles it 
was revealed the origin of transition from energy exchange to 
energy localization and transfer in finite periodic FPU chains. 
Equation (1) is equivalent to the discrete modified Korteweg – 
de Vries (dmKdV) equation [5]. In the long-wave limit Eq.(1) 
reduces to the continuous modified Korteweg – de Vries 
(mKdV) equation [5]. Hirota [5] has shown that the system 
of NSDN equations and Eq.(1) are exactly integrable and has 
found their multi-soliton solutions. Ablowitz and Ladik [11] 
have found the soliton solutions and the conserved quantities 
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of the system of NSDN equations. Bogdan [6] obtained the 
moving and standing discrete breather (DB) solutions for the 
Eq.(1) for the first time. In the dimensionless coordinates
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where the center-of-mass coordinate and the phase of 
oscillations have the form:

	 Xb=Vt+Xb0, Ф=k(n-Xb)-(ω-kV)t+Φ0 	 (6)

center-of-mass velocity and cyclic frequency of oscillations equal 

V=±(2/k)sinh(k/2)cos(k/2), ω=±2cosh(k/2)sin(k/2) (7)

The DB solution of the Eq.(1) has the similar structure as 
the breather of sine-Gordon equation. Zhou et al. [12] have 
obtained the discrete breather solution (5) of the Eq.(1) using 
the wronskian technique. 

Discrete breathers (DB) or intrinsic localized modes 
(ILM) are the spatially localized and periodic in time 
nonlinear excitations of the lattice systems [13,14]. 

During the last decade DBs have been investigated 
intensively in condensed matter physics and materials 
science. In the review [15] the results on gap DBs in two- and 
three-dimensional crystals have been summarized. In [16] 
the molecular-dynamics simulations of DBs in the crystals 
with NaCl structure with different ratios of atomic masses 
of components have been presented. In [17] the DBs, many-
frequency breathers as DBs of a new type and quasibreathers 
in nonlinear monoatomic chains have been analyzed. In 
[17] a general method for constructing DBs which provides 
the pair synchronization between the individual particles` 
vibrations is discussed.

2. The nonlinear superposition formula for 
the Hirota lattice model.  The processes of 
the DBs and shock waves pair collisions. 

In [18] the nonlinear superposition formula has been found 
for the Eq.(1) in the dimensionless coordinates (4). It is a 
recurrence relation allowing to generate more complicated 
soliton solutions using more simple soliton solutions. The 
nonlinear superposition formula is as follows:
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where Ki is the parameter of the i-th soliton, εi=±1 corre-
sponds to the sign of the i-th soliton  velocity. 

The multi-soliton solutions of larger order can be 
constructed in series beginning from the trivial and one-
soliton solutions. One has to substitute two soliton solutions 
of the N-th order, which have different values of the parameter 
Ki. The formula (6) connects four soliton solutions of different 
order–one solution of the (N-1)-th order, two solutions of the 
N-th order and one solution of the (N+1)-th order, e.g. one 
two-soliton solution, two three-soliton solutions and one 
four-soliton solution. 

A similar formula is known for the sine-Gordon 
[19,1] and mKdV [20] equations. In [18] the received 
nonlinear superposition formula has been extended to the 
case of breathers. It was shown how using the nonlinear 
superposition formula to derive the breather and wobbling 
kink [21] solutions. For the Eq.(1) the wobbling kink solution 
has been derived for the first time in [18]. 

Schematically the procedure of constructing the soliton, 
breather and wobbling kink solutions with the use of the 
nonlinear superposition formula can be depicted by means 
of the Lamb diagram (Fig.1).

To obtain breather solution one has to take the complex 
conjugate numbers as the parameters of two solitons (Fig.1b,c).

It is known that the interaction of the arbitrary number 
of solitons can be described by the sequence of their pair 
collisions. Currie [22] has extended the method of soliton 
collision analysis for the breather solutions in continuous 
systems. So it became possible to study the interaction 

Fig. 1. The Lamb diagram for constructing the 2-soliton solution (a), 
the breather solution (b) and the wobbling kink solution (c) of the 
Hirota lattice equation using the nonlinear superposition formula. 
The wobbling kink solution is obtained from the “kink-breather” 
solution by choosing the definite values of the parameters. The 
asterisk denotes the complex conjugate.

	                a				    b

c
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of discrete breathers with each other and with the other 
excitations of the system (kinks and linear waves). In [22—
24] the interaction of breathers, kinks and linear waves is 
investigated for the sine-Gordon equation.

In [25] for the exactly integrable Hirota lattice model 
and equivalent NSDN and dmKdV equations the pair 
collision processes of two discrete breathers, breather and 
one-parametric soliton (kink, antikink), breather and linear 
wave, one-parametric soliton and linear wave are described. 
The explicit expressions of the “kink-breather” and “breather-
breather” solutions are constructed. The shifts of the center-
of-masses and phases of the breather oscillations have been 
expressed in terms of the dynamical characteristics of linear 
and nonlinear excitations of the system.

In general case for the arbitrary values of the parameters 
of the “kink-breather” solution the shifts of the center-
of-mass of one-parametric soliton (kink or antikink) and 
breather and the shift of breather phase of the oscillations 
have the following form:
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For the arbitrary values of the parameters of the “breather-
breather” solution the shifts of the breathers’ center-of-masses 
and phases of the oscillations have the form:
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where i,j =1,2; i≠j. The expressions for the parameters R, δ, 
R12, R14, b1, b2 are complicated, they can be found in [25]. 
The special cases of collision processes have been discussed 
in [25]: the interaction of kink and standing breather; 
the interaction of kink and linear wave; the interaction of  
moving and standing discrete breather, the interaction of  
discrete breather and linear wave, the linear superposition 
of two linear waves. The analysis of the scattering data [25] 
has shown that the DBs and shock waves of the Hirota lattice 
model interact with each other by means of the effective 
short-range forces of attraction. 

Results obtained in [25] can be used for the quantitative 
description of the discrete one-parametric soliton and 
breather propagation and reflection from the free and 
fixed boundaries in the lattice and in constructing the low-
temperature thermodynamics. 

3. The Hamiltonian dynamics of the DBs and 
shock waves of the Hirota lattice model.

The collective coordinate method gives the possibility to 
describe the dynamics of solitons in the nonlinear lattices as 
particle-like excitations [3]. The problem of the Hamiltonian 

dynamics of the DBs of the Ablowitz-Ladik equation was 
considered in [26].

In [27] the formula for constructing the analogs of the 
field pulses for the discrete kinks and breathers has been 
presented. F. G. Mertens and H. Büttner used “angle-action” 
variables to describe the dynamics of the solitons in the 
Toda lattice [28]. In [27] the formula for the generalized 
momentum of the excitation in the chain of atoms 
conjugated to the generalized coordinate qi was proposed:
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where the sign ∫odenotes the integration over the complete 
change of the coordinate [29]. Formally the choice of 
such generalized variables corresponds to the transition 
to the variables “angle-action”, where angle is the definite 
generalized coordinate qi, and the action is the corresponding 
to it generalized momentum Pqi.

In [6,7] the basic physical integrals of motion: energy, 
center-of-mass pulse, energy flow have been found for kinks 
and breathers of the Hirota lattice model, as well as the 
adiabatic invariant for breather. The energy spectrum of the 
kink E1(PX1) 
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and the quasi-classical energy spectrum of breather  
Eb=Eb(PXb, PФ)
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have been obtained [7].
From (13) the expression between the variations of kink 
energy, center-of-mass pulse and velocity was derived  

		  δE1=V1δPX1. 	     (15) 

From (15) one can obtain the canonical Hamilton 
equations describing the uniform rectilinear motion of the 
kink center-of-mass along the atomic chain. 

From (14) the following equation was derived: 

 δEb=VδPXb+ω'δPФ (16) 

From (16) one can obtain two pairs of canonical 
Hamilton equations describing the uniform rectilinear 
motion of the breather center-of-mass along the atomic 
chain with velocity V and the breather oscillations with the 
constant frequency ω' in the reference frame moving with 
the velocity of the breather center-of-mass respectively. 

In the long-wave limit the dependence of DB energy on 
generalized pulses has the form:
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In the quasi-classical limit the value of action PФ, which 
play the role of the generalized pulse of the breather for 
oscillating degree of freedom, is quantized. It equals the 
integer number N of the action quantum ħ. For large N>>1 
the following expression is valid

PФ= ħ(N+const)≈ħN.                             (18)

The expression (17) with (18) is the energy spectrum of 
the DB of the Hirota lattice model in the long-wave quasi-
classical limit. 

From (17) and (18) the following equation can be 
obtained:

∂Eb̃/∂N=ħω'=ħ(ω-kV).                           (19)

The models of the 1D ideal anharmonic crystal and 
equivalent nonlinear transmission line which have been 
proposed by Hirota were generalized by adding the terms 
corresponding to the dissipation processes and the action of 
the external forces [30]. The equation for the generalized 1D 
Hirota lattice model has the form:
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where F(ext)(t) is the external varying in time homogeneous 
force. For the Eq.(20) the dissipation function describing the 
energy dissipation was introduced [27].

The generalized system of the NSDN equations describing 
the equivalent nonlinear transmission line in dimensionless 
units has the form [30]:
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where: 
C(Vn)=Vn

-1arctanVn,   L(In)=In
-1arctanIn .           (22)

In [31] the periodic vibrations that represent the symmetry-
determined nonlinear normal modes have been investigated 
using the group-theoretical method in the LC- and LCR-
transmission lines.

4. The highly discrete and long-wave 
limits of the Hirota lattice model

In this section the highly discrete and long-wave limits of the 
Hirota lattice model are considered. In the highly discrete 

limit the excitation is localised practicaly on the one site of 
the lattice. This limit can be qualitatively described using the 
model of the anharmonic Hirota oscillator.

In [27] two models of the Hirota nonlinear oscillator are 
investigated – 1D oscillator with one spring 

		  ( )21 tan+ = − φ φ φ
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and 1D oscillator with two springs from both sides

		  ( )21 2tan+ = − φ φ φ .
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The corresponding equations can be derived from (1) if we 
consider only one lattice site and if we assume that there is 
interaction only with one nearest neighboring atom or with 
two nearest neighboring atoms, with one from each side. 

For the model of the Hirota oscillator with one spring the 
exact solution describing the oscillations of single atom has 
been found:
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where sn(θ,χ) is the Jacobi elliptic sine function. It is easy to 
see that the cyclic frequency of oscillator has the form 
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where K(χ) is the complete elliptic integral of the first kind, 
χ is the modulus of the Jacobi elliptic functions. The energy 
spectrum of the oscillator in classical case has the form [27]: 
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From (27) and (26) the standard ratio for the oscillators 
follows

			   dE/dN=ω. 	 (28)

The generalized momentum PФ is the action. From quan-
tum mechanics [32] it is known that in the quasi-classical 
limit the Bohr-Sommerfeld rule is valid. In the limit of large 
values of the principal quantum number the Eq.(18) is valid. 
Equations (27) with (18) represent the energy spectrum of the 
Hirota oscillator with one spring in the quasi-classical limit. 

The exact solution and energy spectrum for the model of 
Hirota oscillator with two springs have been obtained [27] 
using the similar calculations as for the one spring model. 

It was shown [27] that after the change of variables:

		      Ø=arctan(f)	                       (29)

the model of Hirota oscillator with two springs is reduced to 
the model of the Duffing oscillator with positive coefficients:

32 2 0f f f+ + =                                     (30)

In literature the classical model of the nonlinear Duffing 
oscillator is well-known. [33] L.-Z. Guo et all [34] have 
investigated the nonlinear dynamics of a mesoscopic driven 
Duffing oscillator in a quantum regime.

Consider the long-wave and small-amplitude limit of the 
Hirota lattice model. In this limit the characteristic width of 
the localized excitation is much larger then lattice constant 
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and the discreteness of the system can be neglected. After 
transition to the frame of reference moving with the speed of 
sound and introducing the slow time

	                
( ) 3,x st t= − =ξ ε τ ε ,                                              (31)

where ε<<1 is the small parameter, Eq.(1) reduces at first to 
the modified Boussinesq and then to the mKdV Eq.(32):
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change of the vaiables (x,t) → (ξ,τ) the integrals of motion 
of the Hirota lattice model can be expressed in terms of the 
integrals of motion of the mKdV equation: 
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For the kink and breather solutions of the mKdV equation 
the expressions for soliton energy and pulses have been ob-
tained. The dependence of energy on center-of-mass pulse 
for the kink has the form 
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which corresponds to the limit of small pulses of the 
dependence (13). From (36) the Hamiltonian equations for 
kink can be easily derived. 

The dependence of breather energy of the mKdV equation 
on pulses ,b
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XP PΦ  has the same form as the breather 

excitation spectra (17) of the Hirota lattice 
model in the long-wave limit. The energy of the mKdV 
breather is less then energy of two free one-parametric 
solitons.
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It is obvious that ΔE=0 for 

	 PФ=P*
Ф,l=2msd0(2l-1)/π, l=1,2,3,...       (38)

In this case breather breaks down into kink and antikink. In 
the quasi-classical limit the energy spectrum of the mKdV 
breather has the form (17), (18).

5. The superlattices of the discrete 
breathers and shock waves 

In [30] the new classes of periodic solutions expressed in 
terms of the Jacobi elliptic functions have been obtained for 

the Hirota lattice model and equivalent system of NSDN 
equations.

The obtained solutions are the spatially periodic waves 
describing the discrete breather and shock wave superlattices. 
In the small-amplitude limit these solutions reduce to the 
linear running and standing waves and in the essentially 
nonlinear limit to the separated discrete breathers or one-
parametric solitons (kinks and antikinks). The new solutions 
have been found for the infinite lattice, however they can also 
satisfy the periodic and zero-fixed boundary conditions for 
the finite-size lattices.

Kovalev [35] has obtained the cnoidal waves solutions of 
the sine-Gordon equation. In [36] the breather lattice solution 
of the sine-Gordon equation has been investigated. In [37] the 
exact periodic solutions of the positive and negative modified 
Korteweg-de Vries equations have been found.

For brevity we will use the following notation
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where sn(θ,χ), cn(θ,χ), dn(θ,χ) are the Jacobi elliptic functions, 
χ, m are the modules of the elliptic functions, χ', m' are the 
additional modules of the elliptic functions.

In [30] the new solution of the Eq.(1) has been found for 
the first time
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Solution (41) describes the moving discrete breather 
superlattice of type I. 

Using the periodicity property of the Jacobi elliptic 
functions the expression describing the nonlinear 
inhomogeneous antiphase oscillations in the chain of atoms 
was obtained from the Eq.(41).
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For m→0 expression (44) reduces to the solution describing 
the nonlinear homogeneous antiphase oscillations: 
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In Fig.2 the dependence of the cyclic frequency on energy 
for the homogeneous and inhomogeneous oscillations of the 
chain with the number of nodes N=6 is shown. The number of 
spatial periods that fit the length of the chain is M=1. Dashed 
line shows the dependence of discrete breather frequency on 
energy for the infinite chain. The boundary conditions are 
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periodic. 
The brunch corresponding to the inhomogeneous 

oscillation is detached from the brunch corresponding to 
the homogeneous oscillation by the bifurcation way and is 
pressed against the breather branch (dashed line). 

From the Fig.2  it is seen that the inhomogeneous oscillation 
is energetically more favorable then the corresponding 
homogeneous oscillation of the same frequency.

To examine the dynamical stability of the obtained 
solutions the direct numerical simulations were used. The 
time integration has been performed by means of a 7th [30] 
order Runge-Kutta scheme. The space-time evolution of 
the breather lattice solution of the type I for the ideal and 
dissipative lattice was investigated. The periodic boundary 
conditions have been used. Simulations demonstrate the 
dynamical metastability of the solution in the ideal lattice and 
instability in the dissipative lattice.

In [30] the solution describing the moving discrete 
breather superlattice of type II has been found.

 ( ) ( ) ( )[ ]arctan cn , cn ,n t A an bt pn qt m= + +φ χ      (46)
where:

( ) ( )2 2
1 2 1 2 1 2

2 2 2 2 2 2
1 2 1 2

2 1 2 1

1 1
,   

s c d A s c d A

A c c A c c
b q

+ +
± ±

+ +
= = . (47)

2 2
2 1

2 2 2 2
1 2 2 1

d dmA
m c d c d

−
= =

′ ′ −
χ
χ .                 (48)

Using the periodicity property of the Jacobi elliptic 
functions the expression describing the nonlinear 
inhomogeneous antiphase oscillations in the chain of atoms 
was obtained from the Eq.(46).

( ) ( ) ( ) ( )[ ]1 arctan cn , cn ,n
n A an qt mt −= χφ .   (49)

In Fig.3 the space-time evolution of the breather su-

perlattice solution of the type  II for the ideal (Fig.3a), dis-
sipative with λ=0.1  (Fig.3b) and driven-damped with λ=0.1, 
Fi=0.5cos(ωt), i=5,10,15,20,25,30 (Fig.3c) lattice is shown. 
The external forces are applied to the center-of-mass of each 
breather in the superlattice. The frequency of the external 
force equals to the frequency of �������������������������������the breather superlattice solu-
tion of type II. The periodic boundary conditions have been 
used. Simulations demonstrate the stability of the solution in 
the ideal lattice and instability in the dissipative lattice. The 
lifetime of breather superlattice solution of the type II in the 
dissipative lattice can be extended through the concurrent 
application of ac driving and viscous damping terms.

In [38] the results of the inelastic neutron measurements 
performed on the NaI crystals show the existence of the 
discrete breather superlattice under certain conditions.

In [30] the solution describing the moving discrete shock 
wave superlattice has been found. 

( ) ( ) ( )[ ]arctan sc , dn ,n A an bt pn qt mt + += χφ ,  (50)

where:
2

2 2 1 1 1 2
2 2 2 2 2 2 2 2 2
2 1 2 2 1 2

2 2,    s c d s c d
s d A c m s d A c

b q ±
− −

= ± =
χ

.      (51)

		
1

2

dA
m d
′

= =
′

χ .		  (52)

       ( ) ( ) ( )sc , sn , cn ,=θ χ θ χ θ χ .		 (53)

Using the periodicity property of the Jacobi elliptic func-
tions the expressions describing the soliton-soliton (54) and 
soliton-antisoliton (55) superlattices in the chain of atoms 
were obtained from the Eq.(50). 

( ) ( ) ( )arctan sc , dn ,n t A an qt m=   φ χ .     (54)

( ) ( ) ( )arctan sc , dn ,n t A bt pn m=   φ χ .     (55)

The space-time evolution of the soliton-soliton and 
soliton-antisoliton superlattice solutions for the ideal and 
dissipative lattice was investigated. The periodic boundary 
conditions have been used. Simulations [30] demonstrate the 
stability of the solution in the ideal lattice and instability in 
the dissipative lattice.

Conclusions

In this review the dynamics and interaction of the discrete 
breathers in exactly integrable model of the 1D anharmonic 
crystal — the Hirota lattice model — has been discussed.

1.  Using the superposition formula one can construct 
the multisoliton, breather and wobbling kink solutions. The 
nonlinear superposition formula is the recurrence relation 
allowing to construct more complicated soliton solutions 
using more simple soliton solutions. The «breather-breather» 
and «kink-breather» solutions describe the processes of pair 
collision of DBs with each other and with kinks (shock waves) 
respectively. The limiting cases of these solutions describe the 
scattering of the linear waves on the nonlinear excitations. 

Fig. 2. The dependence of frequency on energy ω=ω(E) for the 
homogeneous and inhomogeneous oscillations of the chain with 
the number of nodes N=6, M=1. The boundary conditions are 
periodic. Dashed line shows the dependence of discrete breather 
frequency on energy for the infinite chain.
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The analytic results for the scattering data — center-of-mass 
shifts of the DBs and shock waves as well as the shifts of phase 
oscillations of DBs and linear waves has been presented. It 

was shown that the one-parametric solitons and breathers 
as well as two breathers of the Hirota lattice model interact 
with each other by means of the effective short-range forces 
of attraction.

2.  The developed Hamiltonian approach is used to 
describe the dynamics of the DBs and shock waves of the 
Hirota lattice model as particle-like excitations. Using the 
expression for the discrete analog of the field pulse for the 
nonlinear lattice systems the Hamiltonian functions for DBs 
and shock waves in terms of the collective coordinates have 
been obtained. The Hirota lattice model has been generalized 
by considering the terms corresponding to the external forces 
and dissipation processes.

3. In the long-wave limit the Hirota lattice model reduces 
to the exactly integrable modified Korteweg — de Vries 
(mKdV) equation. The breather solution of the mKdV 
equation and its quasiclassical spectrum has been discussed. 
Highly localized states in the chain can be qualitatively 
described by considering the model of the Hirota anharmonic 
oscillator. The solution describing the oscillations of the 
Hirota oscillator, the dependence of frequency on energy and 
the energy spectrum has been found. It was shown that using 
the nonlinear change of variables the model of the Hirota 
oscillator can be reduced to the well-known model of the 
Duffing oscillator.

4. The exact solutions in the form of the nonlinear spatial 
periodic waves in terms of the Jacobi elliptic functions have 
been analyzed. These solutions describe the discrete breathers 
and shock waves superlattices. The periodic and zero-fixed 
boundary conditions have been considered for the arbitrary 
number of sites. The analog of the DB for the finite-size lattices 
has been presented. It was shown that the breather solution 
is energetically more favorable then the corresponding 
homogeneous solution with the same frequency.

5.  Numerical experiments show that the breather 
superlattices are dynamically metastable. The lifetime of 
these dynamical structures is much longer then the period of 
oscillations. The shock waves superlattices remained stable in 
the ideal lattice during the time of the numerical experiment. 
It was found that the lifetime of breather superlattices in the 
dissipative lattice can be extended through the concurrent 
application of ac driving and viscous damping terms.
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