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Signal manipulation with a PT-symmetric coupler embedded into 
an array of optical waveguides
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We study the scattering of linear waves in a long waveguide array with a parity-time (PT) — symmetric defect created by two 
waveguides with balanced gain and loss. We present exact solutions for the scattering of linear waves on such a defect. We 
reveal that the reflected and transmitted linear waves can be amplified substantially after interaction with the PT-symmetric 
defect thus allowing an active control of the wave propagating through the array.
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1. Introduction

Bender and co-authors have developed a possible 
generalization of quantum theory by noting that a class of 
non-Hermitian Hamiltonians possesses real spectra under 
the parity-time (PT) — symmetry condition, where parity-
time means spatial reflection and time reversal [1,2]. This 
mathematical discovery has initiated numerous theoretical 
and experimental studies of open systems with balanced gain 
and loss in optical [3—19], electrical [20,21] and mechanical 
[22—25] systems.

Photonic structures composed of coupled waveguides 
with loss and gain regions offer new possibilities for 
shaping optical beams and pulses compared to conservative 
structures [3—6]. Such structures can be designed as optical 
analogues of complex PT-symmetric potentials, which can 
have a real spectrum corresponding to the conservation of 
power for optical eigenmodes, however the beam dynamics 
can demonstrate unique features distinct from conservative 
systems due to nontrivial wave interference and phase 
transition effects [7—12]. Recently, PT-symmetric properties 
in optical couplers composed of two waveguides were 
demonstrated experimentally [13,14]. Various schemes 
have been suggested to tailor beam shaping and switching 
using PT — symmetric structures, including introduction 
of fabricated defects in periodic lattices [15] and employing 
self-induced refractive index change in nonlinear structures 
[1,16—18]. The possibility of a Hamiltonian reformulation 
of the standard PT-symmetric dimer has been recently 
demonstrated [26], and it calls for a broader question of the 
potential Hamiltonian / Hermitian nature of such systems in 
suitable modified variables.

In this paper, we suggest and analyse PT-symmetric 
systems, where a pair of waveguides with balanced gain 
and loss is embedded into an array of lossless waveguides, 
as illustrated schematically in Fig.1. Since the active region 

is confined at only two waveguides, it can be anticipated 
that the experimental realization of such a structure can 
be simpler compared to the previously considered cases of 
nonlinear structures with a periodic arrangement of gain 
and loss elements [14—16]. On the other hand, the proposed 
structure offers a full potential for amplification and filtering.

We use the coupled-model equations [12,14,16] to model 
the beam propagation in a linear waveguide array with a 
local inhomogeneity created by a pair of PT — symmetric   
waveguides with balanced gain and loss (see Fig.1):

1 1 1 1

0
0 1 1 2 1 0

1
1 1 2 2 0 1

0, 0,1

0,

0,

j
j j

da
i C a C a j

dz
dai i a C a C a na
dz
dai i a C a C a na
dz

− +

−

+ + = ≠

+ + + + ∆ =

− + + + ∆ =

ρ

ρ

       (1)

where j is the waveguide number, z is the propagation 
distance, aj are the mode amplitudes at waveguides, ρ>0 
defines the rate of loss at zeroth and gain at first waveguide, 

Fig. 1. Schematic of an optical waveguide array with a pair of 
PT-symmetric waveguides at the sites with balanced gain and loss. 
Blue colour represents loss, while red colour – gain.
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and C1,2 are the coupling coefficients between the modes 
of waveguides that can be tuned by changing the distance 
between the waveguides. We introduce here parameter ∆n, 
which defines the difference of the refractive indexes of the 
PT-coupler and the other conservative waveguides.

2. Wave Scattering

We start with the analysis of propagation of waves in the 
array, which does not include the PT-symmetric coupler. 
Thus, for C1=C2, ∆n=0, and ρ=0 the waveguide array 
supports the eigenmode solutions in the form of Floquet-
Bloch modes, aj(z)=Aexp[ikj-iβz], where A is an amplitude, 
k is Bloch wave number, and β is a propagation constant 
obeying the following diffraction relation:
  β=-2C1cosk.        (4)

In a general case, the presence of gain and loss at zeroth 
and first waveguides and the difference of the coupling 

constant and refractive index between these two waveguides 
from the other ones play the role of scatterer of the linear 
waves. In order to calculate the transmission and reflection 
coefficients we consider solution to Eq.(1) of the form:
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where the first line represents the incident and the reflected 
waves, and the second one - the transmitted wave. Substituting 
Eq.(5) into Eq.(1) one finds the reflection and transmission 
coefficients.
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Fig. 2. Scattering coefficients |T|2 and |R|2 as the functions of the incident wave wavenumber k and the related refractive index ∆n͂ for two 
typical cases defined by Eq.(7). In panels (a) and (b) the transmission and reflection coefficients are presented for the model parameters 
p͂=0.5and C ͂1=2 when the PT–symmetry is conserved for any value of ∆n͂. In panels (c) and (d) the same is shown but for p͂=2and C ͂1=2. 
In this case, PT-symmetry is conserved only for |∆n͂|<1.
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There are several points following from the analysis of 
Eq.(6): first, the intensity of the transmitted wave does not 
depend on whether the incident wave hits the waveguide 
with gain or with loss, while the intensity of the reflected 
wave does [T(ρ)=T(-ρ) but R(ρ)≠R(-ρ)]. Second, if T=0 
(R=0) for some parameter values, then we have R=-1 
(|T|=1). Third, the PT symmetry breaking condition takes 
the form:

     2 2 2
1max[1, 1 ]crit C n= + −∆

 ρ .                       (7)

This means that if ρ͂2≥ρ͂2
crit then the PT-symmetry is 

broken and the spectrum of the systems possesses complex 
eigenvalues. Fourth, there is a maximum of transmission 
coefficient for some wavenumber k, which is defined by the 
relation:
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where sign ± is determined by the domain of the arccosine 
function. In the next section we present several examples 
of the scattering coefficients for typical cases of relation 
between model parameters. 

3. Illustrations

We now illustrate the transmission and reflection 
coefficients, |T|2 and |R|2 respectively, for typical cases 
which are determined by Eq.(7). These coefficients show 
which part of the incident wave energy passes through 
the defect and which part reflects from it. If some of 
the coefficients exceeds unity then reflected and/or 
transmitted waves have intensity higher than the intensity 
of the incident wave. First typical case is ρ͂2<1. At such 
a value of the gain/loss coefficient PT-symmetry of the 
system is conserved regardless of other model parameters. 
In Fig.2a,b the transmission and reflection coefficients 
are presented for the model parameters ρ͂=0.5 and C ͂1=2 
It is seen that for some value of wavenumber k and ∆n͂ 
both reflected and transmitted waves can be amplified 
by PT-symmetric defect. The second case corresponds to 
gain/loss coefficient limited by the constrain parameter 
1≤ρ͂2<1+C ͂12−∆n͂2. In Fig.2c,d we present the scattering 
coefficients for the following parameter values ρ͂=2 
and C ͂1=2. It is remarkable that the transmission and 
reflection coefficients have a strong, narrow resonance 
around the wavenumber determined by Eq.(8). It means 
that PT-symmetric coupler at such model parameters can 
be used for amplification and filtering of input signal. It 
gives a wide prospect of employing PT-symmetric optical 
structures for the light beams manipulation.

4. Conclusion 

We have proposed a discrete model describing the 
propagation of electromagnetic waves in an array of optical 
waveguides with a two-site defect with balanced gain and 
loss created by a pair of PT-symmetric waveguides. Our 
model differs from the previously considered models by an 
additional parameter ∆n, which defines a difference of the 
refractive indices of the PT-coupler and other conservative 
waveguides. In the case of a long array (when the effects of 
boundaries are neglected), we have derived exact relations 
for the transmission and reflection coefficients of linear 
waves scattered by the PT-symmetric defect. We have 
found that the reflected and transmitted linear waves can 
be substantially amplified by the PT-symmetric defect. 
Due to the presence of a narrow resonance behaviour of 
the scattering coefficients, the considered structure can be 
used for an effective filtering of input signals. Our results 
demonstrate that a pair of PT-symmetric waveguides with 
balanced gain and loss can provide a flexible and active 
control of the propagation of optical beams in waveguide 
arrays. 
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