
226

Letters on materials 4 (4), 2014 pp. 226-229	 www.lettersonmaterials.com

PACS 63.22. Rc, 63.20.dk, 63.20. Ry, 71.15. Mb

Ab initio refining of quasibreathers in graphane
G. M. Chechin, I. P. Lobzenko†

†ivanlobzenko@gmail.com

Southern Federal University, 105 / 42 Bolshaya Sadovaya Str., 344006, Rostov-on-Don, Russia

A method for refining the profile of quasibreathers in the space of all initial atoms displacements is developed in the framework 
of the density functional theory. The method is exemplified by the procedure of constructing the discrete breathers in graphane.
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Introduction

According to the conventional definition [1,2], discrete 
breathers (DBs) represent localized in space and periodic 
in time oscillations in homogeneous nonlinear Hamiltonian 
lattices. The existence of such objects is not obvious. Indeed, 
the localization (exponential in the most cases) of a discrete 
breather means that the oscillation amplitudes of peripheral 
(«tail») atoms are essentially smaller than those of the central 
breather atoms. On the other hand, in nonlinear systems, it is 
typical for the frequency to depend on the amplitude. Thus, it 
seems that atoms in the tail should oscillate with frequencies 
that differ from those of breather core atoms and, therefore, 
DB couldn’t be strictly periodic in time dynamical object.

Despite that, there are a series of model systems in which 
the existence of exact discrete breathers was rigorously proved. 
In this regard, let us refer to the proof provided in [3] for 
systems of weakly coupled nonlinear oscillators, i.e. for the 
lattice models with on-site potentials, and also to the proof 
of exact discrete breathers existence in the Fermi-Pasta-Ulam 
models [4], in which the local interactions between atoms and 
lattice nodes are absent. Due to the rather abstract nature of 
these proofs, it is hard to understand the physical underground 
of the possibility for exact discrete breathers to exist. In our 
work [5], an attempt was made to give a clear interpretation of 
such possibility. Its essence can be described as follows.

Let’s consider the chain of weakly coupled oscillators, and 
let’s displace from the equilibrium state only one of them (we 
will refer to it as the «central» oscillator). In the absence of 
interactions with neighbors, it will oscillate with the natural 
frequency ω0. Under the weak interactions between the 
oscillators, the excitation spreads to its neighbors and their 
oscillations can be described by a sum of terms which possess 
different frequencies. Among these terms, there are both 
describing forced vibrations with frequency ω0 (due to the 
interactions with the central oscillator), and those associated 
with natural frequencies ωj of the peripheral oscillators  
(ωj ≠ ω0 because of the difference in oscillators’ amplitudes). 
For DB to be a periodical dynamical object with frequency 
ω0, it is needed the fine tuning of the initial conditions (the 

profile of DB) for solving the Cauchy problem of nonlinear 
differential equations that govern the lattice dynamics. 
Such tuning is necessary for elimination of the terms with 
frequencies that are not equal to ω0.

Small deviations in the initial breather profile lead to the 
situation where vibrational contributions of the peripheral 
oscillators (particles of the chain) with frequencies ωj ≠ ω0 are 
not suppressed completely. As a result, some quasi-periodical 
vibrational regime arises and this regime was called quasi-
breather (QB) in the work [6].

It is essential for the quasibreather that different lattice 
particles vibrate with different but close frequencies, and the 
frequency of its’ central particle «drifts» in time around a 
certain average value. That makes an exact DB to be a very 
unusual dynamical object. The difficulty of its construction is 
connected with the necessity of very fine tuning of the initial 
displacements of all lattice particles at the moment t=0 (their 
velocities are supposed to be equal to zero). For this tuning 
one can use continuation from the anti-continuous limit 
[7], pair synchronization method [5] or different descent 
methods for minimization of some objective functions in 
many-dimensional space of all initial conditions [8]. Let 
us note that QBs turn out to be more adequate dynamical 
objects compared to exact breathers, since neither physical 
experiment allows one to proceed from the exact initial 
profile of the DB.

Below we consider the problem of the exact breathers 
construction in crystal lattices by means of computer 
simulations. Studies of this type are of great importance, as 
far as the exact analytical solutions of nonlinear differential 
equations are known only in very rare cases.

Almost all works on computer simulations of discrete 
breathers in 1D, 2D, 3D lattices rely on the models of mass 
points (MP-models) with interactions governed by some 
phenomenological potentials. However, such models are 
not rather adequate for discrete breathers description since 
they do not take into account the effects of the electron shell 
polarization of atoms in crystal. Moreover, the effects of that 
kind require the quantum mechanical methods to be well 
described.
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In this connection, in the paper [9], we have investigated 
the discrete breathers in graphane by means of ab initio 
simulations, based on the density functional theory (DFT) 
[10, 11]. It was proved in the frame of this theory that the 
Schrodinger wave function, which is determined in many-
dimensional coordinate space of all electrons, can be 
expressed via a certain functional of the electron density 
function ρ(r) that is determined in the three-dimensional 
coordinate space. Since the exact expressions of exchange-
correlation functionals used in DFT are not known, many 
different their approximate forms were suggested (see [12]).

For ab initio calculations of discrete breathers in graphane 
we used ABINIT package [13,14] that implements the 
main methods of the density functional theory. In fact, our 
calculations have been made under certain approximations. 
The Born-Oppenheimer approximation was used to separate 
the fast movement of electrons and slow movements of atom 
nuclei. The behavior of electron subsystem was described 
by quantum-mechanical Kohn-Sham equations, while atom 
cores were considered as classical particles (the forces acting 
on them are calculated with the aid of the current state of 
the electron subsystem that reacts instantly on the change of 
nuclei configuration). The exchange-correlation functionals 
were taken in the standard local density approximation 
(LDA) form. To speed up the computational runs, we used 
the pseudo-potentials describing the atom nuclei with their 
core electrons. To solve the Kohn-Sham equations the basis 
of plane waves are used, with the maximum energy of these 
waves determined by a certain value of the parameter CutOff.

Taking into account all above-mentioned approximations, 
it can be actually stated that using ABINIT package we have 
studied a certain mathematical model which is named 
hereafter the ABINIT-model. This model seems to be much 
more adequate compared to any MP-model, because it takes 
into account the complex quantum-mechanical effects of 
electron shells polarization in the process of the breather 
oscillations. Let us note that in the papers [15,16], devoted 
to studying breathers in some perovskites, the attempt was 
made to consider the electron shell polarization of some 
atoms within a very simple MP-model. Indeed, the authors 
of [15,16] described the electron shell as only one additional 
degree of freedom.

In this regard, let us note that the ab initio calculations 
based on the density functional theory usually give very good 
values of structural parameters of molecules, crystals and 
nano-objects of different type (often with the error that does 
not exceed 1 %) [12].

Now let’s consider the main difference between the 
graphane gap-breathers properties that were obtained in [17], 
based on the MP-model with Brenner potential, and those 
obtained in [9] within the ABINIT-model. A striking difference 
was found in the function ω(A), representing dependence 
of the frequency ω of DB on its amplitude A.  Indeed, ω(A) 
found in [17] is a complex non-monotonic function which 
demonstrates existence of three different regions in amplitude 
A with two changes of the nonlinearity type (from soft to 
hard and backward). In contrast to this behavior, the function 
ω(A) found in [9] monotonically decreases with increasing of 
the amplitude A.  Moreover, it can be well approximated by 
a segment of the straight line situated inside the gap of the 

phonon spectrum. This result shows the significant errors 
produced by the mass-point model of graphane for large 
amplitudes. Such errors emerge because the MP-models 
can’t describe the complex polarization mechanism of the 
electron shells. On the other hand, this mechanism plays 
an essential role in the large amplitude dynamics of the 
breather (remember that in ABINIT-models the behavior 
of electron subsystem is taken into account by means of the 
quantum mechanics). Let us also note that the parameters of 
the phenomenological potentials for MP-models are usually 
obtained to provide the correct equilibrium configuration 
and phonon spectrum of the considered physical system. In 
fact, this means that the above-mentioned parameters are 
estimated in the small-amplitude approximation, while in the 
case of discrete breather the atom amplitudes are rather large 
(about 10 % of the crystal interatomic distance or even more). 
This could be another reason of the difference between results 
reported in [17] and [9].

2. Quasi breathers in graphane

Graphane can be considered as a system that consists of 
the carbon plane of graphene (XY plane) with hydrogen 
atoms attached to that plane (along the perpendicular to it 
Z-direction) at the opposite sides of the plane in a staggered 
manner. In fact, in the equilibrium state of graphane, carbon 
atoms are slightly displaced from XY plane, again in a 
staggered manner (see Fig.1).

In both works [17] and [9], discrete breathers were 
excited by displacing one of Hydrogen atoms (H0) in Z 
direction, while all initial velocities, as well as displacements 
of all other graphane atoms, were equal to zero. In the process 
of free oscillations, the initial excitation partially spreads to 
the neighbor atoms. First of all, these are the carbon atom 
C0, situated under the H0 atom, and its three symmetrically 
placed nearest neighbors named by C1 (the hydrogen atoms 
H1 attached to them lay under the XY plane). As a result, the 
highly localized in space quasi-periodic vibrational regime 
is excited in the graphane system. Obviously, this dynamical 
object is not an exact DB, but it represents a certain QB. 

Fig. 1. (Color online) The structure of graphane. Carbon and 
Hydrogen atoms are depicted in yellow and blue color respec-
tively. C0 and H0 atoms represent the breather core.
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In  Fig.2, one can see the typical time evolution of the 
central atoms H0 and C0 of such quasi-breather. It is clearly 
seen that oscillations of these atoms are not strictly periodic 
because their amplitudes are spread in some region around 
a certain average value. As a numerical characteristic of the 
«quasibreather rate», i.e. the rate of deviation of the obtained 
dynamical object from the exact DB, one can choose various 
functions Δ[P(0)] of the breather shape P(0) at t=0 which we 
call «breather profile». This profile represents the full set of the 
initial displacements of all graphane atoms which are taken 
into account in the ab initio calculations (remember that 
initial velocities of all atoms are assumed to be equal to zero).

Any exact breather represents a strictly periodic dynamical 
object and, therefore, each atom also must vibrate periodically. 
If we look at Fig.2, we find that oscillations of the hydrogen 
atom H0 are not periodic because its maxima differ in value. 
Therefore, we have to choose such initial profile P(0) that 
leads to fully periodic oscillations of H0 atom. This necessary 
condition turns out to be also sufficient for DB to be exact 
dynamical object. Indeed, a deviation from periodicity of any 
atom leads to the deviation from periodicity of the whole DB 
because of interactions between all graphane atoms. Thus, we 
can choose the following quasibreather rate function:
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where  Zh0(t) is the displacement of H0 atom in z direction at 
the instant t, while M is the number of the breather periods 
to take into account. Obviously, the ideal minimal value 
of the function Δ[P(0)] is equal to zero, and this value can 
be reached only for the strictly periodic function Zh0(t). 
Therefore, for the exact DB construction, one may use (1) as 
an objective function for any descent method in the many-
dimensional space of all initial atomic displacements. For the 
QB we obtained in [9] with the amplitude A=0.469Å (which 
is defined as Zh0(0)), we find the following value of the rate 
function (1) for M=3 can be found:

Δ[P(0)]=0.0147.
Note that the amplitude A=0.469Å corresponds to DB 

situated near the center of the phonon gap.
In this regard, one can ask: «Could the quasibreather rate 

be refined by choosing more accurate initial conditions for 

breather construction (compared to the simple displacement 
of only one H0 atom)?» The more fundamental question 
is: «Could we construct the exact DB in the framework 
of ABINIT-model?» The present paper is devoted to the 
discussion on these problems.

3. The descent method for 
quasibreathers refining

To refine the profile of the QB depicted in Fig.2, we apply a 
certain descent procedure based on the simplex method in 
the Nelder-Mead form [18] (do not confuse with the simplex-
method in the linear programming!). Unlike the steepest 
descent or conjugate gradients methods, this method does 
not require calculations of any gradients. It is very important 
for our purpose because ab initio calculations based on 
density functional theory demands a lot of computing time 
that makes difficult to find gradients of the objective function.

The objective function explicitly depends only on the 
time-evolution of the Hydrogen atom H0. However, it 
depends implicitly on the initial displacements of all graphane 
atoms. Therefore, we have to refine the quasibreather profile 
by tuning the initial values of all atom displacements, i.e. 
to perform the descent procedure in many-dimensional 
coordinate space. Nevertheless, to speed up the calculations, 
one can choose only those parameters which produce the 
main contribution to the objective function. Really, we have 
used two free parameters for our descending: the displacement 
of C0 atom in Z-direction, and the distance between C0 and 
C1 atoms in XY-plane. These parameters are believed to be 
the most important ones for the QB dynamics (let us note, 
that displacement of C1 atoms in Z-direction are defined 
from the condition of immovability of the mass-center). As 
a result of application of the minimization procedure to the 
quasibreather with amplitude A=0.469Å, we have obtained 
the following rate-function value (1):

Δ[P(0)]=0.0013.
One can see that the rate function for DB in Fig.3 is 10 

times less than that for the original QB depicted in Fig.2. 
Thus, we have found the quasibreather that visually seems to 
be almost ideal (compare Fig.2 and Fig.3).

The further improvement of the QB depicted in Fig.3 

Fig. 2. (Color online) The time evolution of the C0 (red) and H0 (blue) 
atoms of the breather found in [8].

Fig. 3. (Color online) The time evolution of the C0 (red) and H0 (blue) 
atoms of the quasibreather refined by the minimization of the rate 
function Δ[P(0)] (1).
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requires great computing time and we did not fulfill such 
refining in the present work. Our purpose was to show 
how one can refine the profile of QBs obtained by ab initio 
calculations using as an example quasibreathers from [9].

4. Conclusion

To the best of our knowledge, all papers treated discrete 
breathers in crystals consider atoms as mass-points whose 
interactions are described by some phenomenological 
potentials. Only in our recent paper [9], these dynamical 
objects were studied in the framework of the ABINIT-model 
based on the density functional theory using as example QBs 
in graphane. Such ab initio approach permits one to take into 
account polarization of electron shells of the crystal atoms 
induced by breather vibrations.

In the present paper, we outline a method for refining 
quasibreathers in this model. The more detailed investigation 
on this subject will be published elsewhere.

To exemplify the above method we have refined the shape 
of one of quasibreathers in graphane that was obtained earlier 
in [9]. 

As a future work, it is tempting to apply the procedure 
of refinement of initial conditions, developed in this work, 
to the discrete breathers in other systems [20] including 2D 
Morse crystal [21—23], crystals with NaCl structure [24] and 
graphene [25,26].

The authors are sincerely grateful to Prof. S.  V. Dmitriev 
for useful discussions. This work was supported by the Russian 
Science Foundation (Grant No. 14‑13‑00982).
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