Моделирование хиральных структур микрополярного типа Васильев А.А.[†]

¹ Тверской государственный университет [†] aleksey.vasiliev@gmail.com

Modeling of micropolar type chiral structures Vasiliev A.A.¹

Tver State University

Рассмотрены вопросы моделирования поведения материалов с хиральной микроструктурой. Введена модель структурных соединений, обобщающая модели сложного соединения частиц конечного размера и трехзвенного соединения балочного типа. Получены аналитическое решение для квадратной ячейки и численное решение для решетки с включением. Решения демонстрируют обусловленные хиральностью особенности деформирования. Для квадратной решетки Коссера построены уравнения аппроксимирующей континуальной среды микрополярного типа.

Ключевые слова: хиральная решетка, структурная модель, микрополярная модель, структурные эффекты

Введение

Разработка структурных и математических моделей материалов с особыми свойствами привлекает в настоящее время нарастающий интерес. Одним из примеров таких свойств является свойство ауксетичности, то есть свойство материала расширяться в поперечном направлении при его растяжении. Все более активно обсуждаются вопросы моделирования, особенности поведения хиральных структур, возможности их практического применения [1-3]. Настоящая статья представляет обобщение известных результатов и некоторые новые результаты исследований авторов в этом направлении.

Обобщенная модель соединения для построения решеток Коссера

В качестве структурных моделей для моделирования материалов с учетом микровращений частиц широко используются решетки Коссера. В статье рассматривается плоская система частиц, кинематика которых определяется векторами смещений с компонентами \mathcal{U} и \mathcal{V} , а также вращениями φ .

Для описания взаимодействия частиц *m* и *n* вводим потенциал вида

Modeling of materials with chiral microstructure is considered. A model of structural joints is introduced. This model is a generalization of the models with complex interaction of finite size particles and three-link beam connections. Analytical solutions for a square cell and numerical solution for the lattice with a rigid inclusion are obtained. The latter solution clearly demonstrates the effect of chiral microstructure. Approximating continuum micropolar type model is derived for the square chiral Cosserat lattice.

Keywords: chiral lattice, structural model, micropolar model, structural effects

$$E_{p} = \frac{l}{2}C_{11}\Delta u^{2} + \frac{l}{2}C_{22}\gamma^{2} + \frac{l}{2}C_{33}\Delta\phi^{2} + \frac{l}{2}C_{12}\Delta u \quad , (1)$$

где использованы обозначения $\Delta u = u_n - u_m$, $\gamma = v_n - v_m - h(\varphi_n + \varphi_m)/2$, $\Delta \varphi = \varphi_n - \varphi_m$, h - расстояние между частицами.

В сравнении с широко используемыми при построении моделей микрополярной теории упругости феноменологическим потенциалом [4], потенциальной энергией сложного соединения частиц с симметричными $(c_2=c_3)$ связями [5], соединения балочного типа [6] в потенциале (1) введено дополнительное слагаемое $C_{12}\gamma\Delta u$. Далее покажем, что частными случаями, в которых применим введенный потенциал, являются сложные несимметричные соединения частиц конечного размера (рис. 1а) с $c_2 \neq c_3$, а также трехзвенные балочные соединения (рис. 1в).

Модель сложного несимметричного соединения частиц конечного размера. Рассматриваем сложное соединение частиц конечного размера, представленное на рис. 1а. Жесткости диагональных соединений выбираем равными c_2 , c_3 . Это дает возможность наряду с симметричными соединениями при $c_2=c_3$ рассмотреть и дать анализ несимметричных соединений с $c_2 \neq c_3$. Потенциал сложного соединения получаем суммированием потенциалов составляющих пружинных соединений. После преобразований потенциал приводится к виду (1). Выражения параметров потенциала (1) через микроструктурные параметры системы частиц конечного размера имеют вид

$$C_{11} = c_0 / h^2 + 2c_1 / r^2 + r^2 (c_2 + c_3) / d^4,$$

$$C_{22} = 4a^2 (c_2 + c_3) / d^4,$$

$$C_{33} = 2a^2 c_1 / r^2,$$

$$C_{12} = 4ar (c_2 - c_3) / d^4.$$
(2)

где r=h-2a - расстояние между частицами, $d = \sqrt{h^2 + (2a)^2}$ - длина диагонального элемента. В случае симметричного соединения $c_2 = c_3$ параметр $C_{12} = 0$ и введенная составляющая отсутствует.

Модель трехзвенного соединения балочного типа. Рассматриваем трехзвенное балочное соединение (рис. 1в). Перемещения и вращения внутренних узлов трехзвенного соединения однозначно выражаются через перемещения и вращения крайних узлов. Исключив внутренние степени свободы, после преобразований выражение потенциала соединения может быть записано в виде (1). Выражения для параметров потенциала (1) через параметры балочных элементов трехзвенного соединения (рис. 16, 1в) имеют вид

$$C_{II} = \beta (h^{2} \overline{h}^{2} A + 48a^{2} I),$$

$$C_{22} = \beta (a^{2} \overline{h}^{2} A + 12h^{2} I),$$

$$C_{33} = EI/\overline{h},$$

$$C_{12} = -(3/2)\beta ah^{2} \overline{h}^{2} A,$$

$$\overline{h} = \sqrt{h^{2} + 4a^{2}},$$

$$\beta = 192\overline{h}IAE / [7a^{2}h^{2}\overline{h}^{4} A^{2} + 192\overline{h}^{2} (h^{4} + 4a^{4})AI +$$

$$+ 9216a^{2}h^{2}I^{2}].$$
(3)

Отметим, что в случае a=0 получаем простое балочное соединение с $C_{12}=0$.

Анализ особенностей деформирования структурных систем

Конечно-элементная модель. С использованием потенциальной энергии (1) может быть построена матрица жесткости соединяющего элемента в локальной системе координат $K_0 = \begin{bmatrix} K_{ij} \end{bmatrix}_{i=\overline{I..6}, j=\overline{I..6}}$ с компонентами

 $K_{ij} = \partial^2 E_p / \partial U_i \partial U_j$, где $\overline{U} = [u_m, v_m, \varphi_m, u_n, v_n, \varphi_n]$ - вектор степеней свободы соединяемых частиц. Используя эту матрицу и матрицу поворотов *G*, которая совпадает с известной матрицей поворотов, используемой в балочных моделях метода конечных элементов (МКЭ), могут быть получены матрицы жесткости элементов в глобальной системе координат $K_{\varphi} = G^T K_0 G$. Далее, используя процедуру МКЭ для суммирования матриц жесткости элементов системы, может быть построена глобальная матрица жесткости системы, а с учетом силовых и моментных нагрузок - уравнения системы.

Аналитическое исследование для квадратной ячейки. Рассмотрим растяжение квадратной ячейки (рис. 2а) на величину $2\Delta v$ в поперечном направлении. Такое деформирование допускает аналитическое исследование. С использованием конечно-элементной процедуры строим систему уравнений. С учетом симметрий ее упрощаем и находим аналитическое решение, определяющее соотношение перемещений в продольном и поперечном направлениях $\Delta u = \alpha \Delta v$, $\alpha = C_{12}/2C_{22}$. Повороты в узлах равны нулю.

В частном случае частиц конечного размера с учетом выражений параметров потенциала (1) через микроструктурные параметры (2) имеем

$$\Delta u = \alpha \Delta v, \quad \alpha = \frac{h - 2a}{2a} \frac{c_2 - c_3}{c_2 + c_3}. \tag{4}$$

При $c_2 \neq c_3$ системы обладают интересным свойством: они отклоняются в поперечном направлении при растяжении в продольном направлении, при этом по направлению отклонения можно судить растягивается система или сжимается. На величину и направление отклонения можно влиять выбором параметров в выражении (4) для α .

Рисунок 2 демонстрирует результаты. Показано деформирование квадратной ячейки с жесткостями $c_1 = c_3 = 0$ $c_2 \neq 0$, $c_0 \neq 0$ (рис. 2а) при растяжении (рис. 26) и сжатии (рис. 2в) на величину $2\Delta v$.

Хиральные решетки Коссера. Вычислительный эксперимент. Представленные модели (рис. 1а, 1в) и по-

Рис. 1. (а) Сложное соединение частиц конечного размера. (б) Балочный элемент. (в) Трехзвенное соединение балочного типа. Система координат, параметры моделей и обозначения, используемые в статье.

Рис. 2. (а) Квадратная ячейка в недеформированном состоянии. Деформация ячейки при растяжении (б) и сжатии (в) на 2 Δv . Исходная квадратная ячейка показана пунктирной линией.

Рис. 3. Хиральные решетки на основе трехзвенных балочных соединений (а) и частиц конечного размера с несимметричными соединениями (б). Деформирование хиральной решетки с жестким включением при растяжении граней на $\Delta u = \Delta v$ (в).

тенциал (1) с параметрами (2), (3) представляют интерес, поскольку на их основе могут быть сформированы хиральные решетки Коссера (рис. 3а, 3б) и их модели. Особенности поведения в достаточно сложных случаях позволяет выявить компьютерное моделирование на основе конечно-элементных моделей. На рис. Зв представлен результат деформирования решетки с жестким включением, составленным из 9 частиц, при растяжении на величину Δv верхней и нижней граней и на равную ей величину Δu боковых граней (рис. 3в). При этом предполагалось свободное смещение частиц вдоль граней. В качестве характерных представляющих интерес особенностей поведения отметим несимметрию деформирования хиральной решетки относительно осей О, О, поворот жесткой частицы. Для решетки с симметричными связями нарушение симметрии и поворот отсутствуют.

Микрополярная модель

Структурные модели и введенный потенциал может также использоваться для построения моделей обобщенной континуальной механики. Построив уравнения для узла, длинноволновым переходом, раскладывая компоненты обобщенных перемещений в ряд Тейлора до производных второго порядка включительно, могут быть построены уравнения континуальной модели

$$C_{11}u_{xx} + C_{22}(u_{yy} + \varphi_y) + C_{12}(v_{xx} - v_{yy} - \varphi_x)/2 + f_x(x, y) = 0,$$

$$C_{11}v_{yy} + C_{22}(v_{xx} - \varphi_x) + C_{12}(u_{xx} - u_{yy} - \varphi_y)/2 + f_y(x, y) = 0,$$

$$(C_{33} - h^2 C_{22}/4) (\varphi_{xx} + \varphi_{yy}) + C_{22} (v_x - u_y - 2\varphi) + (5) C_{12} (u_x + v_y)/2 + m(x, y) = 0,$$

где $f_x(x,y)$, $f_y(x,y)$, m(x,y) - плотность распределенных сил и моментов.

Уравнения (5) являются уравнениями микрополярного типа [7], уточняющими уравнения классической теории упругости. Помимо перемещений они включают и описывают микровращения, например вращения частиц (рис. 3в).

Отметим, что при C_{12} =0 уравнения (5) дают микрополярные уравнения квадратной балочной решетки с обычными элементами (рис. 26) [6], квадратной решетки частиц конечного размера с симметричными сложными соединениями [5], а также модели, которые строятся на основе феноменологического потенциала вида [4]. Уравнения (5) включают отмеченные модели как частный случай и при выборе параметров (2), (3) описывают хиральные решетки (рис. 3а, 36).

Заключение

В статье введен потенциал, описывающий соединения частиц, содержащий дополнительную к широко пользуемому потенциалу составляющую. Показано, что введенный потенциал описывает соединения частиц конечного размера, в которых предполагается отсутствие симметрии (рис. 1a), а также трехзвенные балочные соединения (рис. 1в). Представлено выражение параметров потенциала (1) через структурные параметры моделей (2), (3). Эти модели и их обобщение, на наш взгляд, представляют интерес, поскольку они являются обобщениями широко используемых в микрополярной теории структурных моделей: модели соединения частиц конечного размера со сложными симметричными соединениями, соединений балочного типа, феноменологического потенциала. Такие модели применяются, например, при моделировании гранулированных материалов, материалов с балочной микроструктурой. В статье приводятся и рассматриваются практически реализуемые структурные системы на основе вводимых соединений - квадратная ячейка (рис. 2а), хиральные решетки Коссера (рис. 3а, 3б). Аналитическое исследование и вычислительные эксперименты позволяют выявить интересную особенность поведения - несимметричную реакцию таких структур на воздействия, управлять которой можно используя микроструктурные параметры. Для анализа систем с большим количеством элементов используются континуальные модели. В статье построены континуальные уравнения, которые применимы как аппроксимационные для решеток с хиральной микроструктурой (рис. 3а, 36). Показано, что такие уравнения являются уравнениями микрополярного типа, отмечены изменения уравнений, порождаемые вводимой для уточнения описания микроструктуры модификацией.

Литература

- Spadoni A., Ruzzene M. Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids. (60), 156(2012).
- Liu X.N., Huang G.L., Hu G.K. Chiral effect in plane isotropic micropolar elasticity and its applications to chiral lattices. J. Mech. Phys. Solids, 2012 (60), p. 1907-1921.
- Vasil'ev A.A., Dmitriev S.V., Pavlov I.S. Perspektivnuye materialu. (12), 87 (2011) (in Russian) [Васильев А.А., Дмитриев С.В., Павлов И.С. Перспективные материалы, (12), 87 (2011).]
- 4. Suiker A.S.J., Metrikine A.V., de Borst R. Int. J. Solids Struct.(38), 1563 (2001).
- Pavlov I.S., Potapov A.I., Maugin G.A. Int. J. Solids Struct. (43), 6194 (2006).
- Kim K.S., Piziali R.L. Int. J. Solids Struct. (23), 1563 (1987).
- Eringen A.C. Theory of micropolar elasticity, in: Fracture, v. 2. Ed. Liebowitz H., New York: Academic Press, 1968, p. 621–729.