Supplementary material

Fig. S1. Image of the atomic structure corresponding to the final stage of modeling the state of the system: WTa (a), WCr (b). Light marks the positions of tungsten atoms, dark — Ta and Cr.

Fig. 52. (Color online) Sum of the squares of the atomic shifts in the thermodynamically nonequilibrium systems WTa (a, b) for the temperature range 1500 - 3300 Kand WCr (c, d) for the temperature range 1500 - 2200 K. Sum of squares of displacements of tungsten (a, c) and tantalum (b) atoms and chromium (d). On the *x*-axis, one step is equal to 2 fs. As the temperature increases, the slope of the dependence $\Delta Z(t)$ increases.

Nelasov et al.

Fig. S3. (Color online) Dependence of the values of the sum of squares of the atomic shifts in thermodynamically equilibrium systems WTa (a, b) for the temperature range 1500-3300 K and WCr (c, d) for the temperature range 1500-2200 K. Sum of the squares of the displacements of tungsten (a, c) and tantalum (b) atoms and chromium (d). On the *x*-axis, one step corresponds to 2 fs. As the temperature increases, the slope of the dependence $\Delta Z(t)$ increases.

Fig. S4. (Color online) Interpolation by linear dependence of the logarithm of the calculated diffusion coefficients at the studied temperatures from (1/kT). WTa system: in initial state (a), in equilibrium (b); WCr system: in initial state (c), in equilibrium (d).