Моделирование термических кривых охлаждения в процессе упорядочения сплавов стехиометрии AB, A_3B и A_3B_5 в приближении жесткой кристаллической решетки

Халиков А.Р. 1,† , Дмитриев С.В. 2 , Потекаев А.И. 3

† khalikov.albert.r@gmail.com

¹Уфимский государственный авиационный технический университет, ул. К.Маркса 12, 450000 Уфа ²Институт проблем сверхпластичности металлов РАН, ул. Халтурина 39, 450001 Уфа ³Сибирский физико-технический институт им. акад. В.Д. Кузнецова Томского государственного университета, пл. Новособорная 1, Томск

Simulation of thermal cooling curves during ordering of alloys with AB, A₃B, and A₃B₅ compositions in frame of rigid lattice model

A.R. Khalikov¹, S.V. Dmitriev², A.I. Potekaev³

¹Ufa State Aviation Technical University, K. Marks St. 12, 450000 Ufa²Institute for Metals Superplasticity Problems RAS, Khalturin St. 39, 450001 Ufa

³Siberian Physico-Technical Institute after V.D. Kuznetsov of Tomsk State University, Novosobornaya Sq. 1, Tomsk

Предлагается алгоритм построения термических кривых охлаждения и кинетики упорядочения при монотонном понижении температуры сплавов стехиометрических составов в модели жесткой кристаллической решетки и парных межатомных взаимодействий. Применение алгоритма иллюстрируется на примере квадратной решетки при учете межатомных взаимодействий в первых двух координационных сферах для сплавов состава AB, A_3B и A_3B_5 . Предложенная модель позволяет рассчитывать отдельные области фазовых диаграмм состояния бинарных сплавов.

Ключевые слова: кристаллическая решетка, бинарный сплав, упорядоченный сплав, фазовая диаграмма состояния.

An algorithm of calculation of thermal cooling curves and ordering kinetics during monotonous decrease of temperature of a stoichiometric binary alloy is offered. The algorithm is based on the assumptions of rigid crystal lattice and pairwise interatomic potentials. As an example of application of this algorithm the AB, A3B, and A3B5 alloys based of the square lattice are considered taking into account atomic interactions up to the second coordination sphere. The developed algorithm can be used for modeling certain elements of binary alloy phase diagrams.

Keywords: crystal lattice, binary alloy, ordered alloy, phase diagram.

1.Введение

Бинарные сплавы стехиометрических составов находят применение в технике в качестве конструкционных и функциональных материалов, что вызывает к ним повышенный интерес исследователей [1-6]. Одним из важных вопросов при изучении бинарных сплавов стехиометрических составов является эволюция их структуры в процессе термической обработки. В зависимости от режимов изменения температуры в сплавах могут реализовываться различные структурные состояния, что позволяет эффективно управлять их свойствами. В пределе весьма медленного охлаждения сплава можно приближенно считать, что он проходит через ряд рав-

новесных состояний, что позволяет строить их фазовые диаграммы.

При построении фазовых диаграмм, как для бинарных, так и для многокомпонентных металлических систем пользуются кривыми охлаждения, полученными практическим путем при естественном отводе тепла от сплава. Хорошо известно, что в процессе отвода тепла на кривых охлаждения образуются полки, связанные с фазовыми переходами. Фазовые переходы, отраженные на кривых охлаждения графически переносятся на строящуюся фазовую диаграмму. Построение одной фазовой диаграммы экспериментальным путем занимает большое количество времени, в связи с тем, что приходится проводить большое количество плавок исследуемых элементов в различных концентрациях. Значительную

помощь при построении фазовых диаграмм сплавов могли бы сыграть методы компьютерного моделирования при условии, что силы межатомных связей и их перераспределение при взаимодействии компонентов известны с достаточной точностью. Прогресс, достигнутый в развитии первопринципных расчетов, базирующихся на методе функционала электронной плотности, позволяет решать задачи описания сил межатомных взаимодействий. Данные первопринципных расчетов могут затем использоваться для построения упрощенных эмпирических межатомных потенциалов, которые могут применяться для описания кинетики упорядочения сплавов и построению элементов фазовых диаграмм.

В литературе представлено большое количество работ по теории упорядочивающихся сплавов и моделированию фазовых диаграмм, где обсуждаются, типы и кинетика фазовых переходов порядок-беспорядок, описываются структурные и энергетические характеристики дефектов, приводится расчет стехиометрии и температур фазовых переходов [7-24]. В работах [7,8] была предложена двумерная модель, позволяющая изучать кинетику упорядочения сплавов в модели жесткой кристаллической решетки. Данная модель была обобщена на случай трехмерных решеток и использована при изучении структурно-фазовых превращений ряда сплавов стехиометрических составов [9-13], в том числе, с учетом влияния антифазных границ [10]. В наших недавних работах подобная модель использовалась для изучения кинетики упорядочения сплавов [14-16], определению возможных структурных состояний сплавов на основе двумерных и трехмерных решеток [17-21], расчету энергии сублимации бинарного сплава с учетом влияния состава сплава на межатомные взаимодействия [22,23], математическому моделированию двойных диаграмм состояния конгруэнтного типа [24].

В данной работе решается задача построения термических кривых охлаждения и исследование кинетики упорядочения в процессе отвода тепла для сплавов стехиометрии АВ, А₃В и А₃В₅, заданных на квадратной решетке при различных значениях энергий парных связей и энергий упорядочения.

2. Постановка задачи

Решим следующую задачу.

Заданы:

- стехиометрический состав сплава. В данной работе рассматривается сплавы стехиометрии AB, A_3B и A_3B_5 .
- тип решетки. В данной работе изучается сплав на основе квадратной решетки.
- число координационных сфер межатомного взаимодействия, I. B данной работе I=2.

Ставится следующая задача:

Построение термических кривых охлаждения и кинетики упорядочения для различных энергий упорядочения.

3. Общие соотношения и описание механизма диффузии

Результаты данного раздела справедливы для бинарной структуры состава $A_n B_m$, заданной на решетке любого типа и любой размерности [9-11].

Пусть атомы сортов A и B располагаются в узлах решетки, у которой на i - й координационной сфере имеется N_i атомов. Концентрации атомов сортов A и

$$c_A = \frac{n}{n+m}, c_B = \frac{m}{n+m}$$
 (1)

 $c_A = \frac{n}{n+m}$, $c_B = \frac{m}{n+m}$ (1)

Через $p_{AB}^{(i)}$ обозначим вероятность того, что на i-й координационной сфере атома сорта A находится атом сорта B . В бинарной структуре $A_n B_m$ существуют следующие связи между вероятностями $p_{AA}^{(i)}$, $p_{BB}^{(i)}$, $p_{AB}^{(i)}$ и $p_{BA}^{(i)}$:

$$p_{AA}^{(i)} + p_{AB}^{(i)} = 1, \ p_{BA}^{(i)} + p_{BB}^{(i)} = 1,$$

$$c_A \left(p_{AA}^{(i)} - c_A \right) = c_B \left(p_{BB}^{(i)} - c_B \right). \tag{2}$$

Обозначим через $\varphi_{AB}^{(i)}$ энергию связи пары атомов сортов A и B , расположенных на расстоянии равном радиусу і-й координационной сферы.

Потенциальная энергия структуры в расчете на один атом, при учете взаимодействия атомов в I первых координационных виде

$$E = \sum_{i=1}^{I} \frac{N_i}{2} \left(c_A p_{AA}^{(i)} \varphi_{AA}^{(i)} + c_A p_{AB}^{(i)} \varphi_{AB}^{(i)} + c_B p_{BA}^{(i)} \varphi_{AB}^{(i)} + c_B p_{BB}^{(i)} \varphi_{BB}^{(i)} \right).$$
(3)

Энергия полностью разупорядоченного яния структуры определяется выражением (3) для $p_{AA}^{(i)}=p_{BA}^{(i)}=c_A$, $p_{BB}^{(i)}=p_{AB}^{(i)}=c_B$, что дает

$$E_{disord} = \sum_{i=1}^{I} \frac{N_i}{2} \left(c_A^2 \varphi_{AA}^{(i)} + + c_B^2 \varphi_{BB}^{(i)} + 2c_A c_B \varphi_{AB}^{(i)} \right). \tag{4}$$

Выберем энергию $E_{disord}\,$ в качестве точки отсчета, и будем характеризовать энергию любой структуры разностью

$$\Delta E = E - E_{disord} = \frac{1}{2} \sum_{i=1}^{I} N_i \alpha_i \omega_i , \qquad (5)$$

где введены параметры ближнего порядка

$$\alpha_i = c_A \left(p_{AA}^{(i)} - c_A \right), \tag{6}$$

и энергии упорядочения

$$\omega_i = \varphi_{AA}^{(i)} + \varphi_{BB}^{(i)} - 2\varphi_{AB}^{(i)}. \tag{7}$$

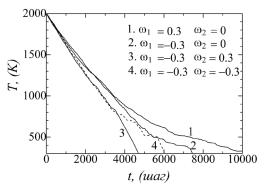
При выводе соотношений (4-7) мы воспользовались соотношениями (1-2) и тем фактом, что $c_A + c_B = 1$.

Как видим из (5), энергия рассматриваемой структуры однозначно определяется координационными числами N_i , энергиями упорядочения $\boldsymbol{\omega}^{(i)}$, а также параметрами α_i , которые, по сути, являются параметрами ближнего порядка Каули.

Пусть атомы сплава располагаются в узлах решетки, у которой на i -й координационной сфере имеется N_i атомов. Числа N_i также называют координационными числами. Принимается, что диффузия в сплаве осуществляется по вакансионному механизму. Элементарным актом диффузии считается переход одного из атомов, окружающих вакансию, на её место. Предполагается, что любой атом из первых K координационных сфер имеет возможность занять место вакансии, и число таких атомов равно $M = \sum_{k=1}^K N_k$, где N_k - координационные числа. Каждому из M атомов приписывается вероятность p_m занять место вакансии в элементарном акте диффузии, так, что $\sum_{m=1}^M p_m = 1$. С этой целью, вычисляется изменение энергии сплава ΔU_m , связанное с переходом атома на вакантное место и, для заданной температуры сплава T, вероятности определяются следующим образом

$$p_{m} = \frac{P_{m}}{\sum_{m=1}^{M} P_{m}},\tag{7}$$

где


$$P_m = \exp\left(-\frac{\Delta U_m}{kT}\right),\tag{8}$$

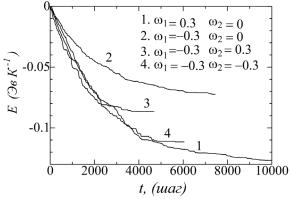
и k= 8,617 3324(78)·10⁻⁵ эВ*K⁻¹ - постоянная Больцмана.

4. Описание алгоритма понижения температуры

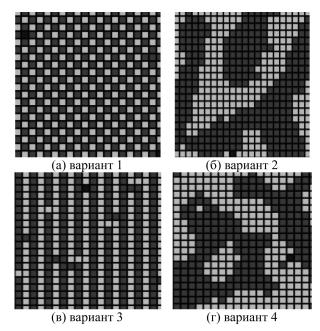
В предлагаемой модели на каждом элементарном шаге диффузии (единичный скачок вакансии) производится уменьшение температуры на СК. Таким образом, моделируется отвод тепла от кристаллического тела. Процесс упорядочения может протекать только при переохлаждении металла ниже температуры Курнакова. Степень переохлаждения характеризуется разностью между температурой Курнакова и температурой кристалла.

В процессе охлаждения сплавов может, выделяется скрытая теплота, связанная с фазовыми переходами, например, с переходом порядок-беспорядок. Выделяющаяся при фазовом переходе теплота учитывалась путем увеличения температуры кристалла на величину kC K, где k - безразмерный коэффициент, в случае если в процессе расчета ΔE (5) энергия оставалась равной той, которая рассчитывалась до перескока вакансии. Таким образом, модель учитывает скрытую теплоту, выделяющуюся при фазовых переходах.

Рис. 1. Кривые охлаждения четырех рассмотренных сплавов стехиометрии AB с течением времени в ходе упорядочения по вакансионному механизму диффузии.


В приведенных ниже примерах принималось C=0.5 K, k=1/50. Процесс охлаждения моделировался, начиная с температуры 2000 K и до достижения температуры 300 K. В качестве исходной структуры брался полностью разупорядоченный сплав.

5. Результаты моделирования


Моделирование проводилось для четырех вариантов энергий парных связей, приведенных в Таблице 1. В последних двух столбцах таблицы указаны соответствующие значений энергий упорядочения на первой и второй координационных сферах.

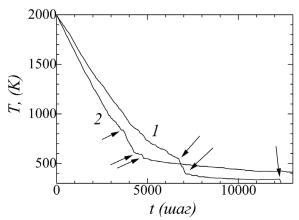
Результаты, полученные для четырех рассмотренных вариантов энергий парных связей для сплава стехиометрического состава AB, представлены зависимостями температуры сплава от времени (кривыми охлаждения сплава) (Рис. 1), зависимостями энергии сплава от времени (Рис. 2) и структурами сплава в конце процесса охлаждения (Рис. 3). Время измеряется числом элементарных актов диффузии.

Рассмотрим характерные области, возникшие на кривых охлаждения в ходе упорядочения сплава для первого варианта. При температуре 600 К и времени от ≈ 6300 до ≈ 7100 наблюдается характерное изменение кривой охлаждения связанное с увеличением наклона и последующим выходом на горизонтальную площадку, что связанно с выделением скрытой теплоты. При этом энергия сплава от времени, в аналогичном временном промежутке, будет неизменной (рис.2 кривая 1). На кривой охлаждения наблюдаются и другие временные интерва-

Рис. 2. Изменение энергии четырех рассмотренных сплавов стехиометрии AB с течением времени в ходе упорядочения по вакансионному механизму диффузии.

Рис. 3. Примеры структур реализуемых на квадратной решетке состава АВ для вариантов 1, 2, 3 и 4 Таблицы 1 (белые клетки – атомы сорта А, черные - сорта В).

лы с небольшими площадками например, от 8300 до 8500 и от 9000 и до 9100, при этом их длина, в первую очередь, зависит от константы C, учитывающий скорость охлаждения. При построении фазовых диаграмм важна фиксация горизонтальных площадок. В рассматриваемом примере, на кривой охлаждения, их количество при температуре от 600 K до 300 K равно 4, это говорит о том, что в этом температурном интервале возможно образование четырех промежуточных фаз. Пример такого количества промежуточных фаз состава AB можно наблюдать на фазовой диаграмме состояния Cu-Au.


6. Обсуждение результатов и выводы

На основе компьютерного моделирования были описаны термические кривые охлаждения кинетика упорядочения в процессе отвода тепла для сплавов стехиометрии AB, A_3B и A_3B_5 при различных энергиях упорядочения. Согласно вводимым параметрам стало возможным моделирование термических кривых охлаждения и кинетики упорядочения при различных скоростях степеней переохлаждения.

Для варианта 1 Табл. 1 на кривой охлаждения наблюдаются области (рис. 1 кривая 1) с небольшими площадками их длина в первую очередь зависит от константы С, учитывающей скорость охлаждения. В интервале температур, при которых образуются полки на кривых охлаждения возможно образование промежуточных фаз.

Табл. 1. Значения энергий парных связей на первой и второй координационных сферах.

No	$\phi_{AA}^{(1)}$	$\phi_{BB}^{(1)}$	$\phi_{AB}^{ (1)}$	$\phi_{AA}^{ (2)}$	$\phi_{BB}^{ (2)}$	$\phi_{AB}^{ (2)}$	a ₁	$\mathfrak{o}_{_{2}}$
1	0,3	0,3	0,15	0,3	0,3	0,3	0,3	0
2	0,15	0,15	0,3	0,3	0,3	0,3	- 0,3	0
3	0,15	0,15	0,3	0,3	0,3	0,15	- 0,3	0,3
4	0, 15	0, 15	0,3	0, 15	0, 15	0,3	- 0,3	-0,3

Рис. 4. Кривые охлаждения сплава стехиометрии A3B (кривая 1 для варианта 2 табл.) и A_3B_5 (кривая 2 для варианта 4 табл.) с течением времени в ходе его упоря-дочения по вакансионному механизму диффузии.

Для варианта 2 Табл. 1 были построены кривые охлаждения для состава AB и ${\rm A_3B}$ (рис. 1 кривая 2 и рис. 4 кривая 1). На кривых охлаждения образуются характерные области полок и изменения наклонов кривой, свидетельствующие об образовании эвтектоидных смесей.

Для варианта 3 Табл. 1 на кривой охлаждения при 800 К наблюдаются ярко выраженная область изменения наклона кривой (рис. 1 кривая 3), поскольку упорядочение происходит быстро, и отсутствуют образования двух и более промежуточных фаз в процессе упорядочения.

Для 4 варианта Табл. 1 на кривой охлаждения (рис. 1 кривая 4), при температуре 700 К и времени 4500 начинается резкое изменение наклона кривой охлаждения, которое заканчивается при температуре 500 К и времени 5000 и формируется горизонтальная полка, которая продолжается 800 единиц времени. В то время как для состава A_3B_5 при 800 К и времени 3800 образуется наклон кривой, который при 600 К переходит в небольшую полку, а уже при 500 К образуется более длинная полка. Такое распределение полок для составов АВ и A_3B_5 характерно при образовании диаграмм состояния с эвтектическим равновесием.

Таким образом, перебирая состав и строя кривые охлаждения, становится возможным построение фазовой диаграммы бинарного сплава. В данной работе рассматривался бинарный сплав $A_n B_m$ на квадратной решетке. Однако предложенная модель может быть использована для моделирования отдельных областей фазовых диаграмм состояния для реалистичных сплавов на трехмерных решетках.

Работа выполнена при финансовой поддержке РФФИ, грант №11-08-97057-р_поволжье_а.

Литература

- 1. A.G. Khachaturian. Teoriya of phase transfor-mations and structure of firm solutions. M: Science, (1974) 384.
- 2. A.A. Smirnov. Molecular and kinetic theory of metals. M: Science, (1966) 488c.
- S. V. Starenchenko, E.V.Kozlov, V.A. Starenchenko.
 Zakonomernosti of thermal phase transition an order a disorder in alloys with superstructures of Ll2, Ll2(M),

- Ll2(MM), Dla. Tomsk: Publishing house: "NTL" (2007). 268.
- V. Dmitriev, M. D. Starostenkov, A.N. Zhdanov. Bases of the kristallogeometrichesky analysis of defects in metals and alloys: The manual for higher education institutions
 – Publishing house of "AltGTU", (1995) 256.
- 5. N. M. Matveeva, E.V.goats the Ordered phases in metal systems Moscow: Publishing house "Science", –(1989) 247.
- A.I. Potekayev, A.A. Klopotov, E.V. Kozlov, V. V. Kulagin. Slaboustoychivye pretransitional structures in nickeltitanium – Tomsk: "NTL" under a general edition of A.I.Potekayev, 296.
- S.V. Dmitriev, E.V. Kozlov, H.B. Lomsky, M.D. Starostenkov. Russian Physics Journal. 3, 73 (1997) (in Russian) [Дмитриев С.В., Козлов Э.В., Ломских Н.В., Старостенков М.Д. Изв. вузов. Физика 3, 73 (1997)].
- 8. O.V. Andrukhova, E.V.Kozlov, S.V. Dmitriev, M. D. Starostenkov. FTT. 39(8), 1456 (1997) (in Russian) [О.В. Андрухова, Э.В. Козлов, С.В. Дмитриев, М.Д. Старостенков. ФТТ. 39(8), 1456 (1997)].
- M.D. Starostenkov, A.A.Tchaplygin, L.A. Popova. Fundamental problems of modern materials science. 9 (3), 367 (2012) (in Russian) [М.Д. Старостенков, А.А. Чаплыгина, Л.А. Попова. Фундаментальные проблемы современного материаловедения. 9(3), 367 (2012)].
- M.D. Starostenkov, A.A.Tchaplygin, A.I. Potekayev. Fundamental problems of modern materials science. 9 (4), 503 (2012) (in Russian) [М.Д. Старостенков, А.А. Чаплыгина, А.И. Потекаев. Фундаментальные проблемы современного материаловедения. 9 (4), 503 (2012)].
- A.I. Potekayev, V.V. Kulagin, A.A. Tchaplygin. News of higher educational institutions. Physics. 55(11) 7 (2012) (in Russian) [А.И. Потекаев, В.В. Кулагина, А.А. Чаплыгина. Известия высших учебных заведений. Физика. 56 (6), 14 (2013)].
- 12. A.I. Potekayev, V.V. Kulagin, A.A. Tchaplygin. News of higher educational institutions. Physics. 55(11), 7 (2012) (in Russian) [А.И. Потекаев, В.В. Кулагина, А.А. Чаплыгина. Известия высших учебных заведений. Физика. 55 (11), 7 (2012)].
- 13. V.V. Kulagina, L.A. Tchaplygina, L.A. Popova. Russian Physics Journal. **55** (7), 78 (2012) (in Russian) [В.В. Кулагина, А.А. Чаплыгина, Л.А. Попова. Известия высших учебных заведений. Физика. **55** (7), 78 (2012)].
- A.A. Kistanov, A.M. Iskandarov, S.V. Dmitriev. Fundamental problems of modern materials science.
 (1), 46 (2011) (in Russian) [А.А. Кистанов, А.М. Искандаров, С.В. Дмитриев. Фундаментальные проблемы современного материаловедения.
 (2011)].

- A.A. Kistanov, A.M. Iskandarov, S.V. Dmitriev. Fundamental problems of modern materials science.
 (4), 45 (2011) (in Russian) [А.А. Кистанов, А.М. Искандаров, С.В. Дмитриев. Фундаментальные проблемы современного материаловедения.
 (4), 45 (2011)].
- 16. A.R. Khalikov, A.M. Iskandarov. NRussian Physics Journal. **12**, 87 (2012) (in Russian) [А.Р. Халиков, А.М. Искандаров. Известия высших учебных заведений. Физика. **12**, 87 (2012)].
- 17. A.R. Khalikov, A.M. Iskandarov, S.V. Dmitriev. Materialovedenie, 7, 3 (2012) (in Russian) [А.Р. Халиков, А.М. Искандаров, С.В. Дмитриев. Материаловедение, 7, 3 (2012)].
- 18. A.M. Iskandarov, S.V. Dmitriev. Crystallography. **57** (5), 829 (2012) (in Russian) [А.М. Искандаров, С.В. Дмитриев. Кристаллография. **57** (5), 829 (2012)].
- A.R. Khalikov, A.M. Iskandarov, S.V. Dmitriev. Fundamental problems of modern materials science.
 (4), 109 (2011) (in Russian) [А.Р. Халиков, А.М. Искандаров, С.В. Дмитриев. Фундаментальные проблемы современного материаловедения.
 (4), 109 (2011)].
- 20. A.A Kistanov, A.M. Iskandarov, S.V. Dmitriev. Russian Physics Journal. **54** (10), 67 (2011) (in Russian) [A.A. Кистанов, А.М. Искандаров, С.В. Дмитриев. Известия высших учебных заведений. Физика. **54** (10), 67 (2011)]
- 21. A.M. Iskandarov, S.V. Dmitriev. Fundamental problems of modern materials science. 7 (3), 78 (2010) (in Russian) [А.М. Искандаров, С.В. Дмитриев. Фунда-ментальные проблемы современного материаловедения. 7 (3), 78 (2010)]
- 22. A.R. Khalikov, A.M. Iskandarov. Letters on Materials. **1** (4), 226 (2011) (in Russian) [A.P. Халиков, А.М. Искандаров. Письма о материалах. **1** (4), 226 (2011)]
- 23. A.R. Khalikov, A.M. Iskandarov, S.V. Dmitriev. Fundamental problems of modern materials science. **8**(4), 109 (2011) (in Russian) [А.Р. Халиков, А.М. Искандаров, С.В. Дмитриев. Фундаментальные проблемы современного материаловедения. **8** (2), 44 (2011)]
- 24. A.R. Khalikov. Materials science questions. **2**, 25 (2010) (in Russian) [A.P. Халиков. Вопросы материаловедения. **2**, 25 (2010)]

Dislocation mechanism of deuterium trapping and transport in tungsten under sub-threshold plasma implantation

V.I. Dubinko^{1†}, E.E. Zhurkin², P. Yu. Grigorev², D. A. Terentyev³, G. van Oost⁴, A.V. Dubinko⁵, S.V. Dmitriev⁶

†vdubinko@mail.ru

¹ National Science Center "Kharkov Physical-Technical Institute", Kharkov 61108, Ukraine ²Saint-Petersburg State Polytechnic University, St-Petersburg 195251, Russia ³SCK•CEN, Boeretang 200, 2400 Mol, Belgium ⁴Department of Applied Physics, Ghent University, 9000 Ghent, Belgium ⁵Institute of Electrophysics and Radiation Technologies NASU, Kharkov 61002, Ukraine ⁶Institute for Metals Superplasticity Problems RAS, Khalturin St. 39, 450001Ufa, Russia

Дислокационный механизм захвата и транспорта дейтерия в вольфраме при подпороговой плазменной имплантации

Дубинко В.И.¹, Журкин Е.Е²., Григорьев П. Ю.², Терентьев Д.А.³, Г. ван Ост⁴, Дубинко А.В.⁵, Дмитриев С.В. 6

¹ННЦ "Харьковский физико-технический институт", Харьков 61108, Украина
²Санкт-Петербургский государственный политехнический университет, Санкт-Петербург 195251, Россия
³Бельгийский Центр ядерных исследований SCK•CEN, 2400 Мол, Бельгия
⁴Отдел Прикладной Физики, Университет Гента, 9000 Гент, Бельгия
⁵Институт Электрофизики и Радиационных Технологий НАНУ, Харьков 61002, Украина
⁶Институт проблем сверхпластичности металлов РАН, ул. Халтурина 39, 450001 Уфа, Россия

Построена модель удержания дейтерия в сплавах вольфрама, основанная на захвате дейтерия дислокациями и диффузии к поверхности по дислокационной сетке с параметрами вычисленными методом ab initio. Модель объясняет наблюдаемые закономерности удержания дейтерия при подпороговой имплантации, не создающей стабильных дефектов, которые обычно рассматриваются как ловушки дейтерия. Насыщение содержания дейтерия с дозой имплантации и эффекты, связанные с легированием вольфрама танталом, описаны в сравнении с экспериментальными данными по плазменной имплантации высокой и низкой интенсивности.

Ключевые слова: сплавы вольфрама, удержание дейтерия, дислокации.

1.Introduction

The current choice of materials to be used in ITER plasmafacing components includes tungsten and beryllium [1]. The sputtering yield of tungsten is much lower than the one of beryllium, while its melting point is significantly higher. However, the practical use of tungsten is hindered by its high ductile-to-brittle transition temperature and therefore high brittleness at the temperatures of operation. In order to improve the mechanical properties, tungsten alloys are conWe develop a model for D retention in W alloys based on deuterium trapping at dislocations and transport to the surface via the dislocation network with parameters evaluated by ab initio calculations. The model can explain experimentally observed trends of D retention in W under sub-threshold implantation, which does not produce stable defects that act as D traps in conventional models. Saturation of D retention with implantation dose and effects due to alloying W with Ta are evaluated and compared with experimental observations under low and high flux plasma implantation conditions.

Keywords: tungsten alloys, deuterium retention, dislocations.

sidered. One of the issues still to be clarified is the retention of hydrogen isotopes (including deuterium and radioactive tritium) in tungsten alloys.

In current models dealing with deuterium (D) retention in tungsten [2], it is argued that nucleation of D-complexes is determined crucially by the concentration of radiation-produced vacancies, which act as traps for fast migrating D atoms. One vacancy has been argued to trap up to six hydrogen atoms [3, 4]. At sufficiently low temperatures