PACS: 81.70Bt

https://doi.org/10.22226/2410-3535-2021-4-514-518

Parameters of load-displacement curves and their correlation with the fracture surface in medium-carbon steel

V. A. Khotinov[†], A. B. Ovsyannikov, A. A. Andreev, V. M. Farber [†]khotinov@yandex.ru

Ural Federal University, Ekaterinburg, 620002, Russia

Impact tests are mandatory for a wide range of structural steel products to evaluate the required service life and operational safety. This test is especially relevant for products used in operation in climatic areas with a cold climate, since it allows one to determine the temperature range of the ductile-brittle transition. Depending on the structural-phase state of a metal, the type of the temperature relationship of impact toughness and its displacement on the temperature axis may differ significantly. For ductile materials, the temperature range of the ductile-brittle transition is shifted towards ultra-low negative temperatures whereas for materials in the embrittled condition it lies in the region of higher temperatures. Ductile-brittle transition behavior of medium-carbon steel with 0.32% C-1.35% Mn-0.003% B in two conditions (after normalization and after quenching and tempering) by instrumented impact testing and fracture analysis was studied. On the descending branch of the force-displacement curves the periods corresponding to different zones of propagation of the main crack are distinguished: period I is the ductile zone of pure shear, period II is the zone of brittle fracture, period III is the ductile zone of break fracture. Each period can be quantitatively described by a set of strength, plastic and gradient parameters. It is established that the displacement to the beginning of linear period II (S_{IIb}) and slope of the curve on it ($\Delta F/\Delta S$)_{II} have a better correlation with shear fracture zone percentage (B) than the other distinguished parameters of force-displacement curves.

Keywords: structural medium-carbon steels, impact toughness, instrumental impact test, load-displacement curves, fracture surface, shear fracture zone percentage.

УДК: 620.172

Характеристики кривых ударного нагружения и их взаимосвязь с параметрами излома образцов стали 32Г2Р

Хотинов В. А. † , Овсянников А. Б., Андреев А. А., Фарбер В. М.

Уральский федеральный университет, Екатеринбург, 620002, Россия

Испытания на ударный изгиб являются обязательными для широкого круга изделий из конструкционных сталей для оценки необходимого ресурса и безопасности эксплуатации. Особенно актуальным данное испытание является для изделий, предназначенных для эксплуатации в климатических районах с холодным климатом, поскольку позволяет определить температурный интервал вязко-хрупкого перехода. При этом в зависимости от структурнофазового состояния металла вид сериальной кривой ударной вязкости и ее положение на температурной оси могут существенно отличаться: для вязких материалов температурный диапазон вязко-хрупкого перехода смещен в сторону сверхнизких отрицательных температур, тогда как для материалов в охрупченном состоянии он лежит в области более высоких температур. Совместным анализом инструментированных кривых ударного нагружения и изломов образцов Шарпи проведена оценка характеристик вязко-хрупкого перехода стали 32Г2Р в различных структурнофазовых состояниях (после нормализации и термоулучшения). На ниспадающей ветви кривых ударного нагружения выделены периоды, соответствующие разным зонам распространения магистральной трещины: І — зоне чистого сдвига Θ , II — хрупкого разрушения $L_{_{x}}$, III — вязкого долома $L_{_{\pi}}$, каждый из которых можно количественно описать набором прочностных, пластических и градиентных параметров. Установлено, что наилучшую корреляцию с долей вязкой составляющей в изломе В среди выделенных параметров кривых ударного нагружения имеют пластические (S_{Π_n}) и градиентные $(\Delta F/\Delta S)_\Pi$ характеристики линейного периода II, зависимости которых удовлетворительно описываются линейными функциями.

Ключевые слова: конструкционные стали, ударная вязкость, инструментированные испытания на ударный изгиб, кривые ударного нагружения, поверхность разрушения, доля вязкой составляющей в изломе.

1. Введение

В зависимости от структурно-фазового состояния металла вид сериальной кривой ударной вязкости $\mathrm{KC} = f(t_{\mathrm{исп}})$ и ее положение на температурной оси могут существенно отличаться. Для материалов в высоковязком состоянии диапазон вязко-хрупкого перехода смещен в сторону сверхнизких отрицательных температур. Например, для строительных сталей класса прочности X70 и выше полное охрупчивание металла наблюдается при температурах $t_{\mathrm{исn}} < -100\,^{\circ}\mathrm{C}$ [1–3].

Помимо определения величины ударной вязкости в практике механических испытаний широко используется фрактографический анализ изломов разрушенных образцов, в которых блестящий «кристаллический» вид излома соответствует хрупкому разрушению, а матовый, волокнистый — вязкому разрушению [4]. Обычно излом образца в области вязко-хрупкого перехода состоит из так называемого «хрупкого квадрата» — области хрупкого разрушения L, окруженной со всех сторон зонами вязкого разрушения: со стороны надреза — волокнистой зоной L_в, сбоку — губами среза λ, снизу — зоной долома L_{π} [5]. При этом измерение размеров области хрупкого разрушения L, и связанная с этим оценка относительной доли вязкого разрушения в изломе В обладает невысокой точностью (±10%), поскольку форма хрупкой области зачастую далека от квадратной [6].

Существенный прогресс в интерпретации результатов испытаний на ударный изгиб образцов с надрезом связан с использованием испытательных машин с записью осциллографических кривых ударного нагружения, анализ которых при разных температурах испытания позволяет выделить целый ряд новых характеристик (прочностных, пластических, энергетических) для описания деформационного поведения материалов [7-9]. С помощью введенных стандартом ASTM 2298 параметров кривых ударного нагружения F = f(S) можно хорошо описать поведение образца с надрезом при изгибе в области полностью вязкого или хрупкого разрушения [10]. Однако такой анализ затруднен при смешанном разрушении образца в диапазоне вязко-хрупкого перехода. Очень информативным для оценки охрупчивания металла оказался линейный период на ниспадающей ветви кривых F = f(S) [11], а также участок, связанный с движением трещины в зоне долома [12].

Целью настоящей работы являлось отыскание при инструментированных испытаниях на ударный изгиб корреляции характеристик кривых ударного нагружения и параметров изломов образцов стали 32Г2Р в различных структурно-фазовых состояниях.

2. Материалы и методики исследования

Материалом исследования являлась среднеуглеродистая сталь 32Г2Р, микролегированная бором (0.003 масс.%), в различных структурно-фазовых состояниях: после нормализации от 900° С (состояние 1) и термоулучшения: закалка от 900° С + отпуск при 650° С, 1 ч (состояние 2).

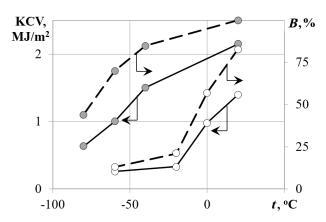
Инструментальные испытания на ударный изгиб стандартных образцов Шарпи проводились при темпе-

ратурах +20...-80°C на копре с падающим грузом INSTRON CEAST 9350, оснащенным инструментальным бойком и системой сбора и обработки данных DAS Ceast 16000. Частота сбора данных составляла 1.0 МГц, что обеспечило интервал между двумя соседними точками 0.001 мс. Первичная кривая ударного нагружения в координатах «усилие F-время t» для уменьшения влияния колебаний системы «опора-образец-молот» программно подвергалась фильтрации с частотой 2 кГц, а затем с помощью программы CeastView 5.94 двойному интегрированию для получения кривой в координатах «усилие F-прогиб S». Испытания при отрицательных температурах проводились с использованием криогенной камеры, в которой охлаждение образцов жидким азотом осуществлялось в этиловом спирте; контроль температуры среды осуществляли термометром ТН-8М с точностью 1°С.

Напряжение течения σ_i [МПа] при ударном изгибе определялось как отношение изгибающего момента M [Н·мм] к моменту сопротивления сечения W_0 [мм³] в месте надреза образца Шарпи [13]:

$$\sigma_i = \frac{M}{W} = \frac{(F_i \cdot l)/4}{(b \cdot h^2)/6}.$$
 (1)

Идентификация вида кривых F=f(S) и выявление на них характерных значений нагрузки F и прогиба S проводилось согласно [10]. При этом принималось, что зарождение магистральной трещины у вершины надреза происходит на восходящей ветви кривой F=f(S) вплоть до F_{\max} и сопровождается прогибом образца $\Delta S_{\mathfrak{g}}$, тогда как ее распространение на нисходящей ветви при $F>F_{\max}$ — прогибом образца $\Delta S_{\mathfrak{g}}$.


Фрактографический анализ изломов образцов стали 32 Г2Р заключался в выявлении на изображениях изломов при увеличении до 5 крат зон вязкого разрушения — чистого сдвига Θ , губ среза λ , волокнистой $L_{_{\rm B}}$, долома $L_{_{\rm Z}}$, а также зоны хрупкого разрушения $L_{_{\rm X}}$, и измерении их линейных размеров с точностью 0.1 мм. Доля вязкой составляющей B в изломе рассчитывалась как

$$B = \frac{A_0 - A_X}{A_0} \cdot 100\%, \tag{2}$$

где $A_{_0}$ — площадь поперечного сечения образца в месте надреза, $A_{_{\rm X}}$ — площадь «хрупкого квадрата».

3. Результаты эксперимента

На Рис. 1 показаны сериальные кривые ударной вязкости КСV для образцов, подвергнутых термообработке по исследованным режимам. Очевидно, что вязкие параметры разрушения образцов, испытавших термоулучшение, выше, чем у нормализованных образцов. Так, для стали в нормализованном состоянии ударная вязкость при $t_{\text{исп}} = +20^{\circ}\text{C}$ составляет КСV =1.40 МДж/м² при доле вязкой составляющей B = 83% (Рис. 1, 2). При снижении $t_{\text{исп}}$ происходит резкое падение энергоемкости разрушения с выходом на «хрупкое» плато при $t_{\text{исп}} \le -20^{\circ}\text{C}$ (КСV ≈ 0.25 МДж/м²). Наблюдаемый характер изменения КСV прослеживается и по ходу сериальной кривой $B = f(t_{\text{исп}})$.

Рис. 1. Сериальные кривые ударной вязкости КСV (сплошные линии) и доли вязкой составляющей B (пунктирные линии) в изломе образцов стали $32\Gamma 2P$: O — после нормализации, Φ — после термоулучшения.

Fig. 1. Temperature dependence of impact toughness KCV (solid lines) and shear fracture zone percentage B (dotted lines): \bigcirc — mode 1, \bigcirc — mode 2.

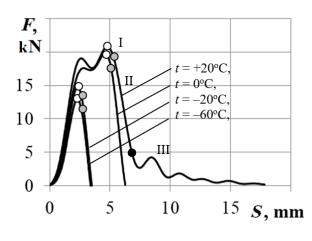
По сравнению с этим сериальная кривая КСV стали после термоулучшения лежит выше во всем диапазоне температур испытаний: при комнатной температуре разница значений равна Δ KCV \approx 0.80 MДж/м² при полностью вязком изломе (B=100%, см. Рис. 2), при снижении $t_{\rm исп}$ наблюдается плавное падение энергоемкости разрушения, однако, даже при $t_{\rm исп}$ = -80° С металл еще находится в температурном диапазоне вязкохрупкого перехода (KCV=0.63 МДж/м², B=44%).

Сопоставление кривых ударного нагружения и изломов образцов позволило выделить периоды на кривых F = f(S), соответствующие деформации, возникновению и росту магистральной трещины (МТр) в выделенных зонах на поверхности разрушения (Рис. 3):

- макропластический изгиб образца без трещины (т. $F_{_{\mathrm{T}}}$ т. $F_{_{\mathrm{max}}}$);
- зарождение МТр под надрезом и ее стабильный рост, сопровождающийся значительной пластической деформацией (т. $F_{\rm max}$ т. $F_{\rm IIn}$) в вязкой зоне $\rm L_{\rm B}$ излома (период I стабильного роста трещины);
- распространение МТр в плоскости, перпендикулярной оси образца (т. $F_{\rm IIH}$ т. $F_{\rm IIIH}$) в хрупкой зоне $\rm L_x$ излома (период II ускоренного роста);

Линейный участок падения нагрузки на периоде II (т. F_{IIH} – т. F_{IIIH}) обусловлен движением хрупкой трещины в зоне L_x . С повышением площади «хрупкого квадрата» в изломе протяженность ΔS_{II} падает, а наклон ($\Delta F/\Delta S$) $_{\text{II}}$ увеличивается как образцов после нормализации, так и термоулучшения (Рис. 3).

Исчезновение периода III на кривой F=f(S), на котором движение магистральной трещины контролируется пластической деформацией в зоне долома $L_{\rm д}$, свидетельствует о выходе на нижнее, хрупкое плато вязкохрупкого перехода: для стали $32\Gamma 2P$ в нормализованном состоянии вязкая зона $L_{\rm д}$ в изломе исчезает при $t_{\rm исп}=-20^{\circ}{\rm C}$ (Рис. 3 а), тогда как в термоулучшенном состоянии она сохраняется еще при $t_{\rm исn}=-80^{\circ}{\rm C}$, хотя и обладает уже более низкой энергоемкостью разрушения (Рис. 3 b).


4. Обсуждение результатов

Подобно анализу кривых при испытаниях на растяжение [14], каждый из выделенных периодов, как на стадии зарождения, так и на стадии распространения магистральной трещины, описывается своим набором параметров пластического течения и разрушения (ПТР): прочностных (σ_i, F_i) , пластических $(\Delta S_i, S_i)$ и градиентных $(\Delta F/\Delta S)_i$.

Рис. 2. Поверхности разрушения образцов Шарпи стали 32Г2Р после нормализации (a) и термоулучшения (b); пунктиром выделена площадь хрупкого разрушения.

Fig. 2. Fracture surfaces of Charpy specimens: mode 1 (a), mode 2 (b), brittle fracture area is highlighted with a dotted line.

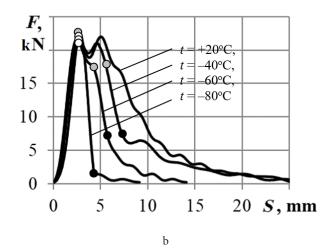


Рис. 3. Кривые ударного нагружения образцов стали 32Г2Р после нормализации (a) и термоулучшения (b), начало периодов: O стабильного роста трещины I (т. F_{max}); \bullet — ускоренного роста II (т. F_{max}); \bullet — долома III (т. F_{max}).

Fig. 3. Load-displacement diagrams of specimens after normalization (a) and quenching and tempering (b), the points of beginning of periods: \circ — stable crack growth I (F_{max}); \bullet — unstable crack growth II (F_{IIIb}); \bullet — break fracture III (F_{IIIb}).

К прочностным параметрам ПТР относятся напряжение начала пластического изгиба σ и соответствующая нагрузка $F_{\scriptscriptstyle \mathrm{T}}$ на кривой F = f(S) на стадии зарождения, страгивания σ_{\max} (F_{\max}) и распространения магистральной трещины $\sigma_{\text{II}_{\text{H}}}$ ($F_{\text{II}_{\text{H}}}$) на периоде II, а также $\sigma_{\text{III}_{\text{H}}}$ ($F_{\text{III}_{\text{H}}}$) на периоде III, к пластическим — начало S_{in} и протяженность каждого периода ΔS , к градиентным — темп падения нагрузки на каждом периоде ($\Delta F/\Delta S$), (Табл. 1).

В силу небольшой протяженности стадии зарождения трещины изменение ее характеристик — энергоемкости KV₂, прогиба образца ΔS_2 (для вязкого состояния ≈4.5 мм, для хрупкого ≈2.5 мм), напряжений σ и σ_{max} , при снижении температуры испытания слабо коррелирует с уровнем ударной вязкости КСV и величиной В. Так, для образцов в термоулучшенном состоянии энергоемкость зарождения трещины составляет $\mathrm{KV_{_3}}$ = 20 Дж и не зависит от $t_{_{\mathrm{исп}}}$, тогда как в нормализованном состоянии при снижении $t_{_{\rm исп}}$ с +20 до -60°C она падает, но остается одного порядка KV_3 = 26 → 12 Дж.

Большую чувствительность к охрупчиванию при вязко-хрупком переходе демонстрируют пластические параметры ПТР на стадии распространения магистральной трещины, сопровождающейся пластическим изгибом $\Delta S_{\rm p} = S_{\rm I} + S_{\rm II} + S_{\rm III}$, изменение которого коррелирует с величиной В (см. Табл. 1).

Как видно из Рис. 4 и данных Табл. 1, изменение пластических (ΔS_{p} , ΔS_{II} , ΔS_{III} , S_{IIH}) и градиентных ($\Delta F/\Delta S$), параметров ПТР на периоде II объективно отражает потерю пластичности металла при уменьшении $t_{_{\!\scriptscriptstyle \mathrm{HCH}}}$ или изменении структурно-фазового состояния стали 32Г2Р. Если в области вязкого разрушения рост магистральной трещины контролируется пластическим изгибом на протяжении всех периодов, то в области вязко-хрупкого перехода зависимость пластического изгиба $S_{\Pi_{u}}$ в начале линейного периода, как и скорости падения нагрузки (наклон) $(\Delta F/\Delta S)_{_{11}}$ на нем, от доли вязкой составляющей В удовлетворительно описываются линейными функциями (см. Рис. 4):

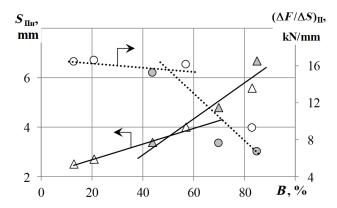


Рис. 4. Соотношение между параметрами периода распространения магистральной трещины и величиной В в образцах стали 32Г2Р после нормализации (светлые значки) и термоулучшения (серые значки): 🛆, 🛦 — изгиб в начале периода S_{II_H} , \bigcirc , \bigcirc — наклон $(\Delta F/\Delta S)_{II}$.

Fig. 4. Correlation between parameters of period II of crack propagation and B value (mode 1 — bright marks, mode 2 — gray marks): \bigcirc , \bigcirc — displacement S_{IIb} at the start of period, \triangle , \triangle gradient $(\Delta F/\Delta S)_{II}$.

при B < 50%

$$S_{\text{IIH}} = 2.10 + 0.03 \cdot B,$$
 (3)
 $(\Delta F/\Delta S)_{\text{II}} = 16.7 - 0.01 \cdot B,$ (4)

$$(\Delta F/\Delta S)_{II} = 16.7 - 0.01 \cdot B, \tag{4}$$

при B > 50%

$$S_{IIH} = 0.06 + 0.07 \cdot B, \tag{5}$$

$$S_{\text{II}_{\text{H}}} = 0.06 + 0.07 \cdot B,$$
 (5)
 $(\Delta F/\Delta S)_{\text{II}} = 25.0 - 0.18 \cdot B,$ (6)

причем при B > 50% падение величины $S_{_{\mathrm{II}_{\mathrm{H}}}}$ и рост наклона $(\Delta F/\Delta S)_{\text{II}}$ происходят интенсивнее, чем при B < 50%.

Изменение угла наклона при B = 50% выявленных зависимостей свидетельствует о смене процесса, контролирующего распространение магистральной трещины в ударном образце при снижении температуры испытания. Следовательно, определяемые по кривым

Табл. 1. Параметры пластического течения и разрушения на стадии распространения магистральной трещины (1 — нормализация, 2 — термоулучшение).

Table 1. Parameters of plastic flow and fracture at the stage of crack propagation (mode 1 — normalization, mode 2 — quenching and tempering).

Состояние Mode	t, °C	Период I		Период II				Период III		
		Period I		Period II				Period III		ΔS_{p} , mm
		F_{max} , кН	$\Delta S_{\rm I}$, mm	F_{IIH} , кН	S_{IIH} , MM	ΔS_{II} , mm	$(\Delta F/\Delta S)_{II}$, кH/мм	F_{IIIH} , кH	ΔS_{III} , mm	ΔS_{p}^{r} , mm
		$F_{\rm max}$, kN	$\Delta S_{\rm I}$, mm	$F_{\rm IIb}$, kN	S_{IIb} , mm	$\Delta S_{\rm II}$, mm	$(\Delta F/\Delta S)_{II}$, kN/mm	$F_{\rm IIIb}$, kN	ΔS_{III} , mm	•
1	+20	20.8	0.5	18.9	5.3	1.5	9.3	4.9	11.0	13.0
	0	19.8	0.5	17.7	5.0	1.1	16.1	-	-	1.6
	-20	14.8	0.3	13.3	2.7	0.8	16.6	-	-	1.1
	-60	13.0	0.2	11.5	2.6	0.7	16.4	-	-	0.9
2	+20	22.0	23.8	-	-	-	-	-	-	23.8
	-40	21.0	2.9	17.5	6.5	1.6	6.7	6.8	17.9	22.4
	-60	20.7	1.9	17.2	4.7	1.4	7.6	6.5	8.6	11.9
	-80	-	-	22.8	2.5	1.5	15.2	2.0	5.2	6.7

ударного нагружения значения $S_{\text{IIH}} = 3.50$ мм и $(\Delta F/\Delta S)_{\text{II}} = 16.0$ кН/мм при B = 50% являются физически обоснованными критериями для оценки температурного диапазона вязко-хрупкого перехода в стали 32Г2Р.

5. Заключение

Совместный анализ инструментированных кривых ударного нагружения в координатах «нагрузка F-смещение S» и поверхностей разрушения образцов стали $32\Gamma 2P$ в нормализованном и термоулучшенном состояниях позволил выявить периоды, соответствующие разным зонам при распространении магистральной трещины: период I — зоне вязкого разрушения $L_{\rm B}$, II — хрупкого разрушения $L_{\rm V}$, III — вязкого долома $L_{\rm V}$.

Наилучшую корреляцию с долей вязкой составляющей в изломе B среди выделенных параметров имеют пластические (S_{II}) и градиентные $(\Delta F/\Delta S)_{\text{II}}$ характеристики линейного периода II. Изменение угла наклона зависимостей при B=50% свидетельствует о смене процесса трещинообразования и позволяет использовать ниспадающий линейный участок на кривых F=f(S) для отыскания температурного диапазона вязко-хрупкого разрушения.

Литература/References

- Y. J. Chao, J. D. Ward Jr., R. G. Sands. Mat. Design. 28, 551 (2007). <u>Crossref</u>
- 2. A. B. Arabey, I. Yu. Pyshmintsev, A. O. Struin, V. M. Farber, V. A. Khotinov. Steel in Trans. 43 (3), 212 (2012). (in Russian) [А. Б. Арабей, И. Ю. Пышминцев, А. О. Струин, В. М. Фарбер, В. А. Хотинов. Известия ВУЗов. Черная металлургия. 43 (3), 212 (2012).]
- 3. B. Wang, J. Lian. Mat. Sci. Eng. A. 592, 50 (2014). Crossref
- 4. Standard GOST 9454-78. Metals. Impact testing at low,

- room and elevated temperatures. Moscow, Publishing house of standards (1994) 19 р. (in Russian) [ГОСТ 9454-78. Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах. Москва, Издательство стандартов (1994) 19 с.]
- 5. L.R. Botvina. Fracture: kinetics, mechanisms, general patterns. Moscow, Nauka (2008) 334 р. (in Russian) [Л.Р. Ботвина. Разрушение: кинетика, механизмы, общие закономерности. Москва, Наука (2008) 334 с.]
- 6. M.A. Shtremel. Fracture. Part 2: Fracture of the structures. Moscow, MISIS (2015) 976 p. (in Russian) [М.А. Штремель. Разрушение. Ч. 2: Разрушение структур. Москва, МИСИС (2015) 976 с.]
- 7. M.P. Manahan, T. Siewert. Pendulum Impact Testing: A Century of Progress. ESIS STP 1380 (2000) 400 p.
- 8. V. A. Khotinov, V. M. Farber, A. N. Morozova. In: Progress in Materials Sciences and Engineering. Springer (2018) p. 27 31.
- 9. V. A. Khotinov, V. M. Farber, A. N. Morozova. Diagnostics, Resource and Mechanics of materials and structures. 2, 57 (2015). (in Russian) [В. А. Хотинов, В. М. Фарбер, А. Н. Морозова. Diagnostics, Resource and Mechanics of materials and structures. 2, 57 (2015).] Crossref
- 10. ASTM E2298. Standard test method for instrumented impact testing of metallic materials. ASTM (2013) 9 p.
- 11. Patent RF № 2570237/34, 10.12.2015. (in Russian) [Патент РФ № 2570237/34, 10.12.2015.]
- 12. Patent RF № 2646548/7, 05.03.2018. (in Russian) [Патент RU № 2646548/7, 05.03.2018.]
- 13. V.M. Farber, V.A. Khotinov. Metal Science and Heat Treatment. 63 (3-4), 183 (2021). (in Russian) [В.М. Фарбер, В.А. Хотинов. Металловедение и термическая обработка металлов. 63 (3-4), 183 (2021).] Crossref
- 14. W. F. Hosford. Mechanical behavior of materials. New York, Cambridge University Press (2005) 425 p. <u>Crossref</u>