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Structural Superplasticity in materials has been reported in so many different classes of materials that there is a case to 
state that this phenomenon is (near)-ubiquitous. Yet, many authors have proposed different rate controlling processes for 
different superplastic materials. Such an approach goes against Newton’s (Principia, Part 3) axiom that “to the same natural 
effects we must, so far as possible, assign the same causes”. In contrast, a viewpoint also exists that steady state, isotropic, 
optimal structural superplastic deformation in different classes of materials can be attributed to a grain-boundary-sliding-
rate-controlled process that develops to a mesoscopic scale (defined to be of the order of a grain diameter or more). If this 
were the case, it should be possible to generate in properly normalized spaces material-independent “universal” curves (2D) 
and surfaces (3D) for the relationships among the different experimental variables/parameters like stress, strain rate, strain 
rate sensitivity index, temperature, real activation energy for the rate controlling process and viscosity. In this paper, by a 
careful analysis of experimental data concerning 175 states of superplastic materials of different classes it is demonstrated 
that such universal curves and surfaces indeed exist. The existence of such universal curves and surfaces that describe the 
phenomenology of steady state, isotropic, optimal structural superplastic deformation in different classes of materials in 
terms of unique equations reinforces the view experimentally arrived at that a unique physical mechanism of deformation is 
responsible for the near-ubiquitous phenomenon of steady state, isotropic, optimal structural superplasticity. 

Keywords: superplastic deformation, phenomenology, steady state flow, isotropic optimal superplastic flow, optimal superplasticity, universal 
flow curves and surfaces, normalized variables. 
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Структурная сверхпластичность материалов обнаружена в столь различных классах материалов, что есть основания 
утверждать, что  это явление является (почти) универсальным. Тем  не  менее, многие авторы предлагали разные 
модели контролирующих скорость деформации процессов для  разных сверхпластичных материалов. Такой 
подход противоречит аксиоме Ньютона (Principia, часть 3) о  том, что  «одним и  тем  же естественным эффектам 
мы должны, насколько это возможно, приписывать одни и  те  же причины». Существует также другая точка 
зрения, что  стационарная, изотропная, оптимальная структурная сверхпластическая деформация в  различных 
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классах материалов может быть приписана процессу, контролируемому скоростью скольжения по  границам 
зерен, который развивается до  мезоскопического масштаба (порядка диаметра зерен или  больше). Если  бы 
это было так, то  появилась  бы возможность генерировать в  должным образом нормированных пространствах 
независимые от материала «универсальные» кривые (2D) и поверхности (3D) для соотношений между различными 
экспериментальными переменными / параметрами, такими как  напряжение, скорость деформации, коэффициент 
скоростной чувствительности, температура, энергия активации контролирующего скорость процесса и  вязкость. 
В настоящей работе путем тщательного анализа экспериментальных данных по 175 состояниям сверхпластичных 
материалов различных классов показано, что такие универсальные кривые и поверхности действительно сущест- 
вуют. Существование таких универсальных кривых и поверхностей, описывающих феноменологию стационарной, 
изотропной, оптимальной структурной сверхпластической деформации в различных классах материалов в терминах 
единых уравнений, подкрепляет экспериментально полученное представление о том, что за почти универсальное 
явление стационарной, изотропной, оптимальной структурной сверхпластичности ответственен единый физический 
механизм деформации.
Ключевые слова: сверхпластическая деформация, феноменология, стационарное течение, изотропное оптимальное сверхпласти- 
ческое течение, оптимальная сверхпластичность, универсальные кривые и поверхности течения, нормированные переменные.

1. Introduction

Superplastic forming is an advanced, near-net-shape 
forming process of parts and components used in aerospace, 
surface transport, architecture and many other industries. A 
classical definition of Structural Superplasticity used to be 
that it is a phenomenon exhibited by micron-grained poly-
crystalline materials at relatively low strain rates and high 
homologous temperatures that permits them to be stretched 
by several hundreds of percent in length under the action of 
a small tensile stress. High strain rate superplasticity results 
when the grain size is reduced to sub-micron or nanometer 
level. In such materials the temperature of superplastic 
deformation can also be brought down significantly. 
Structural superplasticity is observed in different classes of 
materials, viz. metals and alloys, intermetallic compounds 
(intermetallics), ceramics, composites, bulk metallic glasses, 
geological materials, ice / ice-mixtures and nanocrystalline 
materials. In these materials the grain size can vary from a 
few micrometers down to a few nanometers. Therefore, it 
appears reasonable to suggest that Structural Superplasticity 
is a near-ubiquitous phenomenon that is observed in almost 
all classes of materials under appropriate experimental 
conditions [1]. Such a view led to a search for a common 
rate controlling physical mechanism which would facilitate an 
understanding of steady state, isotropic, optimal superplastic 
flow in all classes of materials on a common basis. Based on 
unequivocal experimental evidence, most of the authors 
have concluded that optimal superplastic flow is dominated 
by grain boundary sliding (GBS) [1– 9]. Diffusional flow and 
dislocation activity are suggested to be present to a limited 
extent [1– 4,10]. There is an ongoing debate as to whether 
grain boundary sliding itself can be the rate controlling 
process [11– 22] or some other physical process controls 
the rate of grain boundary sliding [3 – 4,10, 23 – 26] during 
steady state, isotropic, optimal superplastic deformation. 
In contrast, a few analyses have focused on stress-directed 
diffusive control [27], internal state variables applicable 
for the whole field of inelasticity [28], inhomogeneity in 
microstructures [29] and peculiarities of deformation 
and damage [30] as responsible for the phenomenon of 
Superplasticity.

When different rate controlling mechanisms are invoked, 
as done by many authors, to explain structural Superplasticity 
in different materials one is open to a criticism that the same 
phenomenon is explained in different ways in different 
materials. A powerful argument in favour of grain boundary 
sliding rate controlled flow in materials that exhibit steady state, 
isotropic, optimal Structural Superplasticity [13 –14,19 – 21] 
is that it is able to explain this phenomenon in materials of 
different classes and grain sizes that could range from a few 
nanometers to a few micrometers on a common basis using 
a clearly defined physical model for grain boundary sliding. 
Ever since Newton (Principia, Part 3) the axiom / belief that 
“to the same natural effects we must, so far as possible, assign 
the same causes” has dominated science.

If the assumption, based on experimental results, of a 
unique rate controlling physical process underlying steady 
state isotropic, optimal superplastic deformation in all classes 
of materials is correct, it stands to reason that the inter-
relationships among the experimental variables / parameters 
in the phenomenology of superplastic deformation in 
properly normalized spaces  — in which the different 
experimental variables / quantifiable entities are rendered 
dimensionless and made to possess comparable magnitudes, 
as required by Dimensional Analysis — should be describable 
in terms of universal curves / surfaces, which are independent 
of the material and its class. Evidently, this will not be the case 
if the rate controlling deformation process changes from one 
material to the next. In the past, using limited experimental 
data, this concept of the “universal nature of superplastic 
behavior” was probed rather tentatively [13, 31– 34].

It is well-known that the rheological response during 
optimal superplastic deformation is viscoplastic (non-
Newtonian viscous), i. e., the apparent viscosity decreases 
with increasing strain rate in the optimal strain rate range 
(assumed to be present from the lowest strain rate till the 
point of inflection in the sigmoidal log stress - log strain rate 
curve) [2, 4, 35 – 36]. In addition, if a common rate-controlling 
mechanism for optimal superplastic flow is present in all 
superplastic materials of all classes, the real activation 
energy for the rate controlling process compensated for the 
melting temperature on the absolute scale of the concerned 
material should be a constant value. This is because the real 
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activation energy for a rate controlling process is directly 
related to the strength of the atomic bonds and hence the 
shear strength / modulus of a material, which for a unique 
mechanism of deformation should be constant for all classes 
of superplastic materials if it is compensated for the melting 
temperature of the material on the absolute scale (a linear 
approximation).

Materials scientists searched for the physical mechanisms 
of structural superplastic flow in different classes of materials 
without first verifying if a phenomenological description 
of steady state, isotropic, optimal Structural Superplasticity 
can be reduced to a unique form in terms of normalized 
experimental / phenomenological variables / parameters. From 
the viewpoint of mechanics this is a prerequisite for initiating 
a search for a common underlying physical mechanism. 
Here we examine if superplastic deformation in different 
classes of materials, viz. metals and alloys, intermetallics, 
ceramics, composites, bulk metallic glasses, geological 
materials, ice / ice-mixtures and nanostructured materials, 
can be represented by a unique curve (in 2D plots) or a 
unique surface (in 3D plots). Universal curves and surfaces 
will be obtained by normalizing the determinable quantities 
of stress (σ), strain rate (ε∙), strain rate sensitivity index (m), 
temperature of deformation on the absolute scale (T), real 
activation energy needed for the rate controlling process (Q) 
and apparent viscosity (ηapp) with respect to carefully chosen 
reference values to render them dimensionless (as required by 
Dimensional Analysis). By analyzing a mass of experimental 
results pertaining to different classes of superplastic 
materials, a case is made that a (near) material-independent 
universal relationship in a normalized, dimensionless 
σ-ε∙ -m-η-T-Q (hyper)-space exists for steady state, isotropic, 
optimal superplastic deformation. While doing this, there 
will be strict adherence to the phenomenological equations 
commonly used in Superplasticity literature.

2. Analytical Procedure

Following the standard practice in Superplasticity literature, 
a constant grain size, isothermal sigmoidal log (stress,  
σ) - log (strain  rate, ε∙) curve describing superplastic flow 
and a schematic indicating the variation of the strain rate 
sensitivity index, m, with strain rate, ε∙, both taken from [2], 
are presented in Supplementary Material as Figs. S1 and S2. 
Initially m increases with increasing ε∙ and after reaching 
a peak value, it decreases with a further increase in strain 
rate. The value of ε∙ at maximum m value is defined as the 
optimal strain rate (ε∙opt) for superplastic flow because at this 
strain rate in numerous experiments maximum elongation 
to fracture is observed in isothermal tensile tests in materials 
of constant grain size. The maximum value of m is denoted 
as mmax and the corresponding stress on the sigmoidal curve, 
Fig. S1, is defined as the optimal stress (σopt).

The strain rate sensitivity index (m) is dependent on 
grain size, temperature and stress. The value of m increases 
with decreasing grain size and / or increasing temperature, 
but goes through a maximum with increasing stress / strain 
rate. In micro-duplex alloys, the maximum value of m is 
often observed at the upper limiting temperature of the 
two-phase field, but if the alloy is prone to grain coarsening, 

the temperature of maximum m value could be lower. The 
temperature dependence of m is more in region II of Fig. S2 
and the absolute value of m can be increased by either 
increasing the temperature of deformation and / or decreasing 
the grain size. The region in the vicinity of mmax of region II is 
known as optimal superplastic deformation because beyond 
that strain rate dislocation processes of low m value (<0.3) 
commence to operate, m decreases with a further increase 
in strain rate and Superplasticity is gradually lost. Based on 
a few semi-empirical analyses, it has been concluded that 
the elongation at failure in a tensile test of a superplastic 
alloy is approximately proportional to m2. As the elongation 
at fracture becomes quite significant when m ≥ 0.3, by 
convention it has been agreed that for the presence of 
industrially relevant levels of superplastic deformation, m 
should be greater than or equal to 0.3. It is evident, therefore, 
that the best superplastic effects in an alloy of constant grain 
size and a given temperature of deformation are seen when 
m = mmax, ε

∙ = ε∙opt, σ = σopt [2].
For a given sigmoidal curve at constant grain size and 

temperature, σopt, ε
∙
opt and mmax are taken as the normalization 

bases for stress, strain rate and strain rate sensitivity index 
respectively. Further, the test temperature on the absolute 
scale is normalized with respect to the melting point of the 
material on the absolute scale and such a normalization 
gives rise to, what is known as, the homologous temperature 
(Thom = T / Tm). The melting points of the alloys selected for 
this study are taken from the open literature.

The real activation energy for the rate controlling 
mechanism in the case of optimal structural superplasticity 
is calculated using the method outlined in [37]. For the case 
of constant microstructure, the following equations are valid.

� ��� �� � � � ��A Q
kT

kT
h s

n
3

1* exp ; ,if it is taken that 
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�
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�
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Q
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where ν is thermal vibration frequency. The constants A3 and 
A4 are independent of σ and T (but dependent on grain size), 
but are inter-related; i. e., A4 = (1013A3.ℎ / k). (The magnitude of 
A3 is determined empirically at the level of phenomenology, 
but it can be computed ab initio in the physical model) 
[13 –14,19 – 21]. Q is the real activation energy for the rate 
controlling process. Here ℎ is the Planck constant, k is the 
Boltzmann constant and σ* = (σ / (eσc)) is the dimensionless 
stress, with e the base of the natural logarithms. σc is the 
stress at which m =1 in the dimensionless strain rate - stress 
space (ε∙*−σ* space) [12, 37]. (It is readily seen that in these 
calculations the strain rate is normalized with respect to unit 
strain rate (1 s−1) to make it dimensionless, i. e. ε∙*= (ε∙  / 1). In 
view of this identity, ε∙ is used here onward without a star 
symbol even though it is dimensionless. Moreover, it is 
clear that the condition 0 < σ*<1 is satisfied and as a result 
a problem of convergence that could arise if any function of 
stress were expanded in a power series is avoided.

The need to make stress dimensionless (σ*), and the 
physical meaning of the symbols σc, po are explained in detail 
elsewhere [11–12, 37]. For completeness, a short account 
of the same is given in the Supplementary Material as 
Appendixes S. A and S. B.
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During steady-state, isotropic superplastic deformation 
in the optimal range, the stress exponent, n (the inverse of 
the strain rate sensitivity index, m), is strongly dependent on 
stress, grain size and temperature. It has been shown that the 
solution for this case is [12, 37]

         
n p p B C

c
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�
�
�
�
�

�
�
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�
�

�

�
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where p0 = (n0 −1), with no the value of n as the stress / strain 
rate tends to zero. (The notation p0 is introduced in place 
of (n0 −1) to simplify the equation.) Thus, one finds that in 
the optimal range of superplastic deformation n decreases 
linearly with increasing stress. B and C are grain size- and 
temperature-dependent constants. The above equations 
have to satisfy two constraints [37]: (i) p0 should decrease 
with increasing temperature and always have a positive 
value greater than or equal to 1 (based on the experimental 
observations that n decreases with increasing temperature 
and always has a value greater than or equal to 1) and σc 
(the stress at which n = m =1 in the dimensionless ε∙-σ*space) 
also should decrease with increasing temperature and 
always have a value greater than σopt at every temperature. 
(By convention, σ is taken as positive for a tensile test). 
(ii) Under isothermal and constant grain size conditions 
p0 = Cσc (see Eq.  (2)). That is, (Ci /C(i−1)) should always be 
equal to (p0i /p0(i−1)) × (σc(i−1) / σci), where the subscripts (i) 
and (i−1) correspond to two different temperatures Ti and 
Ti−1. p0 and σc values are calculated individually for the two 
different isothermal tests, using a material of constant grain 
size and Eq. (2). Further details are given in Supplementary 
Material — see Appendixes S. A and S. B.

It has further been shown that the real activation energy 
for the rate controlling process in superplastic flow is 
calculated from the equation [37],
         ln ln
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Evidently, the above equations correspond to the cases 
ν = (kT / ℎ) or ν =1013 s−1 respectively. 

When ν = (kT / ℎ), a plot of ln ε∙ vs (1 / T) at a constant value 
of [2p0 + (1+ p0) ln (σ / eσc) − (p0σ / σc)] is prepared, the slope of 
which is equal to (−Q / k). The value of Q thus obtained should 
be and has been verified to be independent of the magnitude 
of [2p0 + (1+p0) ln (σ / eσc) − (p0σ / σc)], which is kept constant. 
Similarly, when ν =1013 s−1, the slope of a plot of (ln ε∙ + ln T) vs 
(1 / T) at a constant value of [2p0 + (1+p0) ln (σ / eσc) − (p0σ / σc)] 
is equal to (−Q / k). The value of Q thus obtained is, again, 
independent of the magnitude of [2p0 + (1+p0) ln (σ / eσc) − 
−(p0σ / σc)] that is kept constant [37]. Then, the real activation 
energy for the rate controlling process during superplastic 
flow, Q, is normalized with respect to (kTm) (or (RTm) (the 
latter, if the value of Q is reported per mole) to render it 
dimensionless and material-independent. The assumption 
made while arriving at this last step is that the real activation 

energy for a given deformation process in a material is a linear 
function of its melting temperature on the absolute scale.

As mentioned earlier, superplastic deformation is (non-
Newtonian) viscoplastic [1– 2, 36]. When the von Mises yield 
criterion is used (it is straightforward to use any other yield 
criterion of choice; only the value of the numerical constant 
(=3) will change [17,18]), by definition the apparent viscosity 
is equal to (σ /(3 ε∙)). It is then normalized with respect to 
the absolute viscosity, ηabs, (Newtonian viscosity), which is 
obtained as (σc /(3ε∙c)), where ε∙c is the strain rate corresponding 
to σc (which is calculated from Eqs. (2), (3a), (3b) for different 
isothermal conditions), because σc, by definition, is the stress 
at which m =1 in the dimensionless log ε∙ − log σ* space and ε∙c is 
the corresponding strain rate (Newtonian viscous flow). The 
algorithm used for these computations is given in Fig. 1 and 
the same algorithm was used to obtain the required numerical 
values for the different classes of superplastic materials for 
which adequate experimental data could be found. The 
details of calculation are given in the Supplementary Material 
as Appendix S. B.

Fig.  1.  Flow chart describing the algorithm used for the present work.
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3. Results

Table S1, given in the Supplementary Material, displays the 
details of the normalization bases, the computed constants 
and the normalized value (Q / kTm), in case of the different 
classes of superplastic materials examined in this study 
using the algorithm presented in Fig. 1. In all, experimental 
data pertaining to 175  material conditions were analyzed. 
Eq.  (2) is solved by the method of least squares using the 
particle swam optimization solver available in the pyswarm 
package [38 – 39]. Relationships were plotted using the 
computed values as curves in 2D and surfaces in 3D in the 
relevant normalized spaces. The 2D plots are (Q / kTm) values 
for superplastic materials of all classes, log (normalized 
stress) vs. log (normalized strain rate); normalized m vs. 
log (normalized strain rate); and log (normalized viscosity) 
vs. log (normalized strain rate). The 3D surfaces are 
log (normalized stress) vs. log (normalized strain rate) vs. 
Thom; normalized m vs. log (normalized strain rate) vs. Thom; 
and log (normalized viscosity) vs. log (normalized strain 
rate) vs. Thom.

The 2D plot of (Q / kTm) for different materials for 
ν = (kT / h) is given in Fig. 2 and the mean value of (Q / kTm) for 
all classes of superplastic materials is estimated as 15.34 with 
a standard deviation of ±2.16, i. e. the steady state, isotropic, 
optimal superplastic deformation in materials of all classes 
has a real activation energy for the rate controlling process 
which obeys the relation

	               (Q/kTm) =15.34 ± 2.16		  (4)

The 2D plots of log (normalized stress) vs. log (normalized 
strain rate), normalized m vs. log (normalized strain rate) 
and log (normalized viscosity) vs. log (normalized strain rate) 
were also constructed. Following usual practice [2 – 4], the 
plots are divided into 3 domains based on the m value / strain 
rate range and are given in Fig. 3 a – i. A quadratic curve is 
fitted to the 2D plots in each domain and the R2 values (see 
Appendix  S. C, included as Supplementary Material, for 
details) are calculated to estimate the deviation from the 
mean curve.

The meaning of the symbols used in these plots, along 
with the materials and the conditions of testing is given as 
Fig. S3 in the Supplementary Material.

A quadratic surface is fitted to the normalized data 
ranging from the lowest strain rate to the highest strain rate 
employed in the tests, i. e. in addition to the optimal region 
of superplastic flow, the regions of non-optimal superplastic 
deformation at either end of the optimal strain rate range 
are also taken into account in these plots. The universal 3D 
surfaces are presented in Fig. 4 a – c.

4. Discussion

From the 2D plot (Fig. 2) of (Q / kTm) for different materials, 
it is observed that the value of (Q / kTm) for superplastic 
materials of all classes taken together is nearly constant 
with a mean value of 15.34 and the actual values are evenly 
distributed on either side of the mean line, regardless of the 
material class. The relatively small deviation from the mean 
line is most likely due to experimental scatter. It is clear 
that the “common nature of the underlying rate controlling 
mechanism” (whatever it is) is established in this normalized 
space, particularly when one notes that the (Q / kTm) value 
is obtained from a transcendental (exponential) equation, 
which, by its nature, can lead to significant scatter in the 
computed values, see Eqs. (1) and (3).

The mean curve equations and the R2 values for 
the normalized plot of log (stress) vs. log (strain rate) 
(Fig. 3a – c) are given as Eq. (5). Similarly, for the normalized 
m - normalized log (strain rate) plots (Fig.  3 d – f) the mean 
curve equations are available as Eq.  (6). It is clearly seen 
that the correlation is the best in the optimal range of 
log (stress) - log (strain rate) and m - log (strain rate) plots 
where the condition 0.3 < m ≤ mmax is obeyed. The fit is “least 
good” in the domain 0 < m ≤ 0.3 where the low m value is traced 
at least in some physical models to the presence of a threshold 
stress that should be overcome for the onset of dominant grain 
boundary sliding (see, for example, [2 – 4,13 – 21, 40 – 41]). 
Taking the particular model in Padmanabhan et al. [see, 
for example, 13,14, 20], as an example, it can be pointed out 
that the threshold stress necessary for the onset of large scale 
(mesoscopic) grain boundary sliding, say, in an intermetallic 
will be significantly more than that required for a pseudo-
single phase superplastic alloy. This is the origin of the greater 
scatter in this lower non-optimal superplastic region. The fit is 
better, although still “less good” than in the optimal region, at 

Fig.  2.  (Color online) (Q / kTm) vs. Superplastic materials.
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the upper end of strain rate (beyond ε∙opt) where in most of the 
models dislocation processes are considered to be responsible 
for the loss of Superplasticity. In this range the response of 
different classes of materials is likely to be less different than 
in the lower end of strain rates of Superplasticity loss arising 
from a widely varying magnitude of the threshold stress for 
the onset of dominant grain boundary sliding. Nevertheless, 
dislocation flow characteristics are significantly affected by 
the crystal structure of materials, different phases present 
and their composition, which are different for different 
superplastic materials. Hence the poorer fit in this region 

compared with that present in the optimal strain rate range 
in which mesoscopic grain boundary sliding controls the rate 
of flow.
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Fig.  3.  (Color online) 2D plots normalized stress-normalized strain rate curves (a-c), normalized m-normalized strain rate curves (d-f), 
normalized viscosity-normalized strain rate curves (g-i). 0 < m < 0.3 (a), 0.3 < m < mmax (b), ε∙ > ε∙opt;  where m < mmax (c), 0 < m < 0.3 (d), 
0.3 < m < mmax (e), ε∙ > ε∙opt;  where m < mmax (f), 0 < m < 0.3 (g), 0.3 < m < mmax (h), ε∙ > ε∙ opt;  where m < mmax (i).
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The mean curve equations and the R2 values for the 
normalized plot of viscosity-strain rate relationship 
(Fig. 3 g – i) are given in Eq. (7). It can be observed that in all 
the 3 domains, as defined above, the distribution of points 
is nearly the same with respect to the mean curve. R2 values 
for all the 3 domains are also almost equal. Evidently, the 
normalized viscosity of the materials is (almost) independent 
of the rate controlling mechanism as well as the material and 
its class. This is understandable because viscosity is a material 
property, while the other variables considered like stress, 
strain rate and m value are strongly related to the deformation 
mechanisms present.
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The quadratic equations for the 3D surfaces (Fig. 4 a – c) 
are given below, along with the corresponding R2 values. 
Very good correlation is found for the entire strain rate range 
for all the 3  plots and the highest correlation between the 
experimental results and the predictions is found for viscosity 
for reasons already stated.
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It is worthy of noting that the R2 values are greater (and 
hence the accuracy of fit superior) for the 3D plots than for 
the 2D plots. This is because in the 2D plots, the normalized 
log (stress) vs. log (strain rate), normalized m vs. log (strain 
rate) and the normalized log (viscosity) vs. log (strain rate) 
relationships are plotted ignoring the fact that all these values 
do not correspond to the same homologous temperature. In 
contrast, in the 3D plots the variation of these relationships 
with respect to the homologous temperature is also taken 
into account. When this is done, even in the non-optimal 
strain rate ranges (very low strain rates where m < 0.3 as 
well as when ε∙ > ε∙ opt) the threshold stresses and the stresses 
needed to drive the dislocation processes respectively for the 
different materials get normalized with respect to the melting 
temperature of the material concerned and the “universal 
surface” thus obtained covers very accurately the entire 
strain rate range employed in the experiments involving the 
superplastic materials of all classes. Thus, there is a strong 
case to suggest that Eqs. (4) – (6), (8) – (10) describe uniquely 
superplastic deformation in materials of all classes examined 
in this paper with a high degree of accuracy. Such a conclusion 
is equivalent to suggesting that a unique physical mechanism 
of deformation is present in the optimal region of steady state 
isotropic superplastic flow regardless of the material or its 
class, where the fit is the best between the experimental data 
and the predicted sigmoidal curve that describes constant 
grain size, isothermal superplastic flow [1– 2, 4, 21].

5. Consequences

The above analysis leads to the following important 
conclusions.

1.	 The real activation energy for the rate controlling 
process in the region of steady state, isotropic, optimal 
superplastic flow in all classes of materials divided by (RTm), 
where R is the gas constant and Tm is the melting point of the 
material concerned, is of a constant value, given by Eq. (4). As 
the melting temperature compensated real activation energy 
for materials of all classes is the same, a case could be made 
out that the physical mechanism responsible for controlling 
the rate of flow in the steady state, isotropic, optimal region 
of superplastic deformation is the same for materials of all 
classes.
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2.	 Eqs. (8) – (10) describe superplastic deformation in 
all classes of materials accurately. That is, in normalized space 
the superplastic response of materials of all classes, investigated 
employing widely varying experimental conditions, can be 
represented by these equations. Eqs. (5) – (7), on the other hand, 
make it clear that the fit is the best in the optimal region of 
isotropic, steady state superplastic flow. These observations 
also suggest that the underlying rate controlling mechanism in 
the optimal region of flow in all classes of materials is the same.

The above conclusions are arrived at by analyzing data 
pertaining to 175 material states, which include metals and 
alloys, ceramics, intermetallics, composites, nanostructured 
materials, bulk metallic glasses, geological materials and 

ice / ice-mixture. Therefore, confidence can be placed on these 
conclusions.

A survey of literature reveals that most workers suggest 
different rate controlling mechanisms for the optimal 
superplastic flow region in different materials, which is 
not consistent with the present findings based on the 
phenomenological description of the deformation process. 
However, there is an exception. In a series of publications, 
a physics-based model for grain boundary sliding (GBS) 
that develops to a mesoscopic scale (defined to be of the 
order of a grain diameter or more) has been proposed and 
it has been suggested that this process controls the rate of 
steady state isotropic optimal superplastic deformation in 

			   a							               b

		   				                  c
Fig.  4.  (Color online) Universal surfaces log (normalized stress) vs. log (normalized strain rate) vs. Thom (a), normalized m vs. log (normalized 
strain rate) vs. Thom (b), and log (normalized viscosity) vs. log (normalized strain rate) vs. Thom (c).
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different classes of materials. This model has been verified 
and validated by carefully performed experiments and an 
analysis of the experimental data pertaining to different 
classes of superplastic materials. A detailed description 
of that model and its verification and validation can be 
found elsewhere [13 – 21, 40 – 41]. In a recent paper [20], 
by analyzing the experimental data pertaining to different 
classes of superplastic materials (of 40 different chemical 
compositions and different constituent phases), it has been 
possible to propose a methodology for predicting the steady 
state, isotropic, optimal superplasticity of even so far untested 
materials with the help of four universal constants, whose 
values are given in the paper under reference [20]. This 
procedure requires no new experiments for describing steady 
state, isotropic, optimal superplastic flow in any, including 
untested, materials to an order of magnitude accuracy. The 
present work suggests that this approach has an edge over the 
other models proposed to date.

As Eqs. (4) – (6), (8) – (10) represent superplastic 
materials of all classes, optimal alloy design becomes possible. 
This possibility is briefly explained here with an example. 
Suppose one decides to develop a superplastic material with, 
say, titanium as the major constituent. From Eq. (4) one can 
obtain the likely real activation energy, Q, the material should 
have. This value is then compared with the real activation 
energy of pure titanium. As pointed out earlier, in this 
approach Q is directly related to the shear modulus. Suitable 
alloy additions to Ti are known from the literature, e. g. Al, V 
etc. The shear moduli of different elements are listed by Frost 
and Ashby [42]. Using the rule of mixtures and past empirical 
knowledge available in literature, the percentages of the other 
elements to be added can be decided. Evidently, such an alloy 
has to be tested at conditions where m = mmax. In Eq. (9), put 
m = mmax. Decide the homologous temperature at which one 
wants to superplastically form this alloy. Then, solving Eq. (9) 
the strain rate at which the alloy should be deformed for the 
best results can be known.

It should be noted, however, that the average values 
for numerous alloys have been used to arrive at the above 
equations. Therefore, a few fine tuning experiments would 
be necessary to freeze the deformation conditions. But, such 
tests will be far less in number than would be the case with a 
trial and error approach. Focused research in this direction is 
likely to be very rewarding.

The experimental data analyzed in this paper correspond 
to a single starting microstructure in case of every material 
studied. It is highly desirable that the effect of grain size 
variation on superplastic deformation (by changing 
the starting grain size of every alloy) also is studied in 
great depth similar to the effects of strain rate, stress and 
temperature which have already been focused on. When 
such sets of experimental data are available, one will have to 
include one more normalized parameter in the analysis, viz., 
normalized grain size, i. e. the actual grain size divided by a 
rather large grain size at which superplastic effects would be 
absent / negligible.

From a practical point of view, it is desirable to extend 
the theoretical treatment (in the form of simulations) using 
Fig. 1 of [14] as the Representative Volume Element (RVE), 
employ the Phase Field Method coupled to Finite Element 

Method, for example, and analyze the bulk and sheet metal 
deformation of superplastic materials. Efforts in this regard 
have just commenced.

6. Conclusions

The “universal nature” of steady state isotropic, optimal 
superplastic deformation, i. e., the presence of material-
independent 2D and 3D plots for the measurable parameters 
of superplastic deformation in materials of all classes in 
properly normalized spaces, is demonstrated with a high 
degree of accuracy by presenting these plots in dimensionless 
forms, i. e. normalized log (stress) - normalized log (strain 
rate) - homologous temperature; normalized strain rate 
sensitivity index - normalized log (strain rate) - homologous 
temperature; normalized log (viscosity) - normalized 
log (strain rate) - homologous temperature and melting 
temperature compensated activation energy for the rate 
controlling process in optimal superplastic deformation 
range vs. superplastic materials of different classes. This 
insight should facilitate a more efficient design and use of 
superplastic materials. That the ratio (Q / RTm) is nearly 
constant for superplastic materials of different classes is 
yet another argument in favor of a common origin of the 
phenomenon of Optimal Structural Superplasticity. The 
very close proximity of the curves for different materials 
becomes less close as one moves away from the optimal 
range of superplastic flow. At the lower region of strain 
rate, the decrease in the m value below ≈0.3 and the loss 
of superplasticity is attributed in some approaches to the 
presence of a threshold stress, which could vary significantly 
from one material to the next. This makes the superposition 
of curves for the different materials less good in the region 
0 < m < 0.3. At the higher extremes of strain rates (ε∙ > ε∙opt), 
the loss of Superplasticity is traced in many models to 
deformation processes like dislocation glide, climb etc., 
which are strongly dependent on the crystal structure, 
alloy composition and the phases present. In this range also 
the fit is less good than what is seen in the optimal range. 
Therefore, in both the non-optimal superplastic flow regions 
present at either end of the optimal range, the superposition 
of the curves pertaining to different materials is less good. 
Therefore, it is concluded based on the phenomenology of 
superplastic flow that the occurrence of this phenomenon 
in the optimal region of deformation in materials of all 
classes has a common origin. Among the several models 
proposed to date in order to explain steady state optimal, 
isotropic Structural Superplasticity, one model, in which 
grain boundary sliding develops to a mesoscopic scale 
and controls the rate of deformation, meets this criterion 
imposed by the phenomenology of the flow process that 
a single mechanism should be able to describe this near-
ubiquitous phenomenon.

Supplementary material. The online version of this paper 
contains supplementary material available free of charge at the 
journal's Web site (lettersonmaterials.com).
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