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Structural Superplasticity in materials has been reported in so many different classes of materials that there is a case to
state that this phenomenon is (near)-ubiquitous. Yet, many authors have proposed different rate controlling processes for
different superplastic materials. Such an approach goes against Newton’s (Principia, Part 3) axiom that “to the same natural
effects we must, so far as possible, assign the same causes”. In contrast, a viewpoint also exists that steady state, isotropic,
optimal structural superplastic deformation in different classes of materials can be attributed to a grain-boundary-sliding-
rate-controlled process that develops to a mesoscopic scale (defined to be of the order of a grain diameter or more). If this
were the case, it should be possible to generate in properly normalized spaces material-independent “universal” curves (2D)
and surfaces (3D) for the relationships among the different experimental variables/parameters like stress, strain rate, strain
rate sensitivity index, temperature, real activation energy for the rate controlling process and viscosity. In this paper, by a
careful analysis of experimental data concerning 175 states of superplastic materials of different classes it is demonstrated
that such universal curves and surfaces indeed exist. The existence of such universal curves and surfaces that describe the
phenomenology of steady state, isotropic, optimal structural superplastic deformation in different classes of materials in
terms of unique equations reinforces the view experimentally arrived at that a unique physical mechanism of deformation is
responsible for the near-ubiquitous phenomenon of steady state, isotropic, optimal structural superplasticity.

Keywords: superplastic deformation, phenomenology, steady state flow, isotropic optimal superplastic flow, optimal superplasticity, universal
flow curves and surfaces, normalized variables.
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CTpyKTypHas CBepXIUIACTUYHOCTb MaTepyajIoB OOHapy»KeHa B CTOIb Pa3/INYHBIX KJIacCaX MaTepUaJIOB, YTO €CTb OCHOBAHMA
YTBEpXKJaTh, YTO ITO fABJICHME ABJIACTCA (IIOYTM) YHUBEpPCaAbHBIM. TeM He MeHee, MHOTVe aBTOPBI IIpef/Iaraly pasHble
MOJieTE KOHTPOIMPYIOIUX CKOPOCTb AedopMaluyl IPOLECCOB A PasHBIX CBEpPXIUIACTUYHBIX MaTepuanoB. Takoil
IIOZIXOX, IpoTMBOpednT akcroMe Hulorona (Principia, 9acTp 3) 0 TOM, Y4TO «OJHMM M Te€M >Ke eCTeCTBEHHBIM a¢ddexTam
MBI JOJDKHBI, HaCKOMBKO 3TO BO3MOXKHO, IPUIINCBIBATbL OFHM M Te >Ke IpuumHbl». CyIecTByeT TakKe Apyras TOUYKa
3peHMdA, YTO CTAl[MOHAapHas, M30TPOIIHAA, ONTUMa/IbHAs CTPYKTypHas CBepXIUIacTMYecKas jgedopMmauusa B pasIMYHBIX


https://crossmark.crossref.org/dialog/?doi=10.22226/2410-3535-2022-1-5-14&domain=pdf

Harisankar et al. / Letters on Materials 12 (1), 2022 pp. 5-14

KJIaccaX MaTepyajoB MOXKET ObITb IIPUIIMCAaHA IIPOLECCY, KOHTPOIUPYEMOMY CKOPOCTBIO CKOMbXKEHVS IO TpPaHNUIlaM
3epeH, KOTODBIN pasBMBAaeTCA [0 Me30CKONMMYecKoro Mmacmraba (mopsAgka amaMerpa sepeH mmm 6Gonblue). Ecmu 6b1
9TO OBUIO TaK, TO IOSBMIACH Obl BO3MOXKHOCTb T€HEPUPOBATh B JO/DKHBIM 00pa3soM HOPMMPOBAHHBIX IPOCTPAHCTBAX
He3aBJCMMBIe OT MaTepyaja «yHUBepcanbHble» kKpusble (2D) u nmoBepxHocTy (3D) 11 COOTHOLIEHMIT MEXAY Pa3TMIHBIMU
9KCIIepYIMEHTA/IbHBIMM IIepeMEHHBIMM/ TapaMeTpaMy, TaKMMU KaK HaIlpsyKeHue, CKOpocTh aedopmanuy, koadduiyent
CKOPOCTHOJ YyBCTBUTEIBHOCTH, TeMIIEPaTypa, SHEPrisl aKTUBALMY KOHTPOIUPYIOLIETO CKOPOCTh Ipoliecca U BA3SKOCTbD.
B Hacroseil paboTe IyTeM TIIATEIbHOTO aHA/IM3a SKCIIEPUMMEHTANTbHBIX JAHHBIX 110 175 COCTOSAHMAM CBEPXIIACTUYHBIX
MaTepyanoB pasJMYHbIX KJIACCOB II0OKa3aHO, YTO TaKue YHUBEPCaabHble KPMBbIE U IOBEPXHOCTHU AEICTBUTEIBHO CYIIECT-
BytoT. CylllecTBOBaHMe TaKVX YHUBEPCAIbHBIX KPUBBIX U IIOBEPXHOCTEN, OMUCHIBAIOMINX (PeHOMEHOJIOTMIO CTAllMIOHAPHOIL,
M30TPOIIHOI, OIITUMAJIBHOI CTPYKTYPHOI CBEPXIUIACTIYECKON e opMalLiiy B pas/IMYHbIX K/IacCax MaTepPUaIoB B TEPMIHAX
eIVHBIX ypaBHEHMII, TIOAKPEIUIAeT SKCIePYMEHTA/IbHO MIONTy4YeHHOe IIPEeACTaB/IeHIe O TOM, YTO 3a [IOYTU YHUBEPCATbHOE
SIBJICHYIE CTALMOHAPHOI, U3OTPOIIHOIA, ONITYIMA/IbHON CTPYKTYPHOI CBEPXIIACTUYHOCTY OTBETCTBEHEH eVHbII PU3NIecKmil
MexaHM3M fedopmannn.

KnroueBbie cioBa: CBEPXIITACTUYECKAA HerOpMaLU/Iﬂ, q)eHOMeHOJIOFI/IH, CTaJMMIOHAPHOE T€YECHNE, I3OTPOIIHOE OIITYMA/IbHOE CBEPXII/IACTI -
YE€CKOE T€YE€HME, OIITVIMa/IbHAA CBEPXIVIACTUIHOCTD, YHUBEPCA/IbHbIE KPMBbIE U IIOBEPXHOCTN T€IECHNA, HOPMUPOBAHHbIE IIEPEMEHHDIE.

1. Introduction

Superplastic forming is an advanced, near-net-shape
forming process of parts and components used in aerospace,
surface transport, architecture and many other industries. A
classical definition of Structural Superplasticity used to be
that it is a phenomenon exhibited by micron-grained poly-
crystalline materials at relatively low strain rates and high
homologous temperatures that permits them to be stretched
by several hundreds of percent in length under the action of
a small tensile stress. High strain rate superplasticity results
when the grain size is reduced to sub-micron or nanometer
level. In such materials the temperature of superplastic
deformation can also be brought down significantly.
Structural superplasticity is observed in different classes of
materials, viz. metals and alloys, intermetallic compounds
(intermetallics), ceramics, composites, bulk metallic glasses,
geological materials, ice/ice-mixtures and nanocrystalline
materials. In these materials the grain size can vary from a
few micrometers down to a few nanometers. Therefore, it
appears reasonable to suggest that Structural Superplasticity
is a near-ubiquitous phenomenon that is observed in almost
all classes of materials under appropriate experimental
conditions [1]. Such a view led to a search for a common
rate controlling physical mechanism which would facilitate an
understanding of steady state, isotropic, optimal superplastic
flow in all classes of materials on a common basis. Based on
unequivocal experimental evidence, most of the authors
have concluded that optimal superplastic flow is dominated
by grain boundary sliding (GBS) [1- 9]. Diftusional flow and
dislocation activity are suggested to be present to a limited
extent [1-4,10]. There is an ongoing debate as to whether
grain boundary sliding itself can be the rate controlling
process [11-22] or some other physical process controls
the rate of grain boundary sliding [3-4,10,23 -26] during
steady state, isotropic, optimal superplastic deformation.
In contrast, a few analyses have focused on stress-directed
diffusive control [27], internal state variables applicable
for the whole field of inelasticity [28], inhomogeneity in
microstructures [29] and peculiarities of deformation
and damage [30] as responsible for the phenomenon of
Superplasticity.

When different rate controlling mechanisms are invoked,
as done by many authors, to explain structural Superplasticity
in different materials one is open to a criticism that the same
phenomenon is explained in different ways in different
materials. A powerful argument in favour of grain boundary
slidingrate controlled flowin materials that exhibit steady state,
isotropic, optimal Structural Superplasticity [13-14,19-21]
is that it is able to explain this phenomenon in materials of
different classes and grain sizes that could range from a few
nanometers to a few micrometers on a common basis using
a clearly defined physical model for grain boundary sliding.
Ever since Newton (Principia, Part 3) the axiom/belief that
“to the same natural effects we must, so far as possible, assign
the same causes” has dominated science.

If the assumption, based on experimental results, of a
unique rate controlling physical process underlying steady
state isotropic, optimal superplastic deformation in all classes
of materials is correct, it stands to reason that the inter-
relationships among the experimental variables/parameters
in the phenomenology of superplastic deformation in
properly normalized spaces — in which the different
experimental variables/quantifiable entities are rendered
dimensionless and made to possess comparable magnitudes,
as required by Dimensional Analysis — should be describable
in terms of universal curves/surfaces, which are independent
of the material and its class. Evidently, this will not be the case
if the rate controlling deformation process changes from one
material to the next. In the past, using limited experimental
data, this concept of the “universal nature of superplastic
behavior” was probed rather tentatively [13,31-34].

It is well-known that the rheological response during
optimal superplastic deformation is viscoplastic (non-
Newtonian viscous), i.e., the apparent viscosity decreases
with increasing strain rate in the optimal strain rate range
(assumed to be present from the lowest strain rate till the
point of inflection in the sigmoidal log stress - log strain rate
curve) [2,4,35-36].Inaddition, ifa common rate-controlling
mechanism for optimal superplastic flow is present in all
superplastic materials of all classes, the real activation
energy for the rate controlling process compensated for the
melting temperature on the absolute scale of the concerned
material should be a constant value. This is because the real
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activation energy for a rate controlling process is directly
related to the strength of the atomic bonds and hence the
shear strength/modulus of a material, which for a unique
mechanism of deformation should be constant for all classes
of superplastic materials if it is compensated for the melting
temperature of the material on the absolute scale (a linear
approximation).

Materials scientists searched for the physical mechanisms
of structural superplastic flow in different classes of materials
without first verifying if a phenomenological description
of steady state, isotropic, optimal Structural Superplasticity
can be reduced to a unique form in terms of normalized
experimental/phenomenological variables/parameters. From
the viewpoint of mechanics this is a prerequisite for initiating
a search for a common underlying physical mechanism.
Here we examine if superplastic deformation in different
classes of materials, viz. metals and alloys, intermetallics,
ceramics, composites, bulk metallic glasses, geological
materials, ice/ice-mixtures and nanostructured materials,
can be represented by a unique curve (in 2D plots) or a
unique surface (in 3D plots). Universal curves and surfaces
will be obtained by normalizing the determinable quantities
of stress (o), strain rate (€), strain rate sensitivity index (m),
temperature of deformation on the absolute scale (T), real
activation energy needed for the rate controlling process (Q)
and apparent viscosity (napp) with respect to carefully chosen
reference values to render them dimensionless (as required by
Dimensional Analysis). By analyzing a mass of experimental
results pertaining to different classes of superplastic
materials, a case is made that a (near) material-independent
universal relationship in a normalized, dimensionless
o0-é&-m-n-T-Q (hyper)-space exists for steady state, isotropic,
optimal superplastic deformation. While doing this, there
will be strict adherence to the phenomenological equations
commonly used in Superplasticity literature.

2. Analytical Procedure

Following the standard practice in Superplasticity literature,
a constant grain size, isothermal sigmoidal log/(stress,
0) - log (strain rate,€) curve describing superplastic flow
and a schematic indicating the variation of the strain rate
sensitivity index, m, with strain rate, ¢ both taken from [2],
are presented in Supplementary Material as Figs. S1 and S2.
Initially m increases with increasing ¢ and after reaching
a peak value, it decreases with a further increase in strain
rate. The value of ¢ at maximum m value is defined as the
optimal strain rate (éopt) for superplastic flow because at this
strain rate in numerous experiments maximum elongation
to fracture is observed in isothermal tensile tests in materials
of constant grain size. The maximum value of m is denoted
as m__and the corresponding stress on the sigmoidal curve,
Fig. S1, is defined as the optimal stress (Oop‘).

The strain rate sensitivity index (m) is dependent on
grain size, temperature and stress. The value of m increases
with decreasing grain size and/or increasing temperature,
but goes through a maximum with increasing stress/strain
rate. In micro-duplex alloys, the maximum value of m is
often observed at the upper limiting temperature of the
two-phase field, but if the alloy is prone to grain coarsening,

the temperature of maximum m value could be lower. The
temperature dependence of m is more in region II of Fig. 52
and the absolute value of m can be increased by either
increasing the temperature of deformation and/or decreasing
the grain size. The region in the vicinity of m___of region Il is
known as optimal superplastic deformation because beyond
that strain rate dislocation processes of low m value (<0.3)
commence to operate, m decreases with a further increase
in strain rate and Superplasticity is gradually lost. Based on
a few semi-empirical analyses, it has been concluded that
the elongation at failure in a tensile test of a superplastic
alloy is approximately proportional to m?* As the elongation
at fracture becomes quite significant when m>0.3, by
convention it has been agreed that for the presence of
industrially relevant levels of superplastic deformation, m
should be greater than or equal to 0.3. It is evident, therefore,
that the best superplastic effects in an alloy of constant grain
size and a given temperature of deformation are seen when
m=m_,€E= éopt, 0=0,, [2].

For a given sigmoidal curve at constant grain size and
temperature, o, € and m__are taken as the normalization
bases for stress, strain rate and strain rate sensitivity index
respectively. Further, the test temperature on the absolute
scale is normalized with respect to the melting point of the
material on the absolute scale and such a normalization
gives rise to, what is known as, the homologous temperature
(T,,.,=T/T ). The melting points of the alloys selected for
this study are taken from the open literature.

The real activation energy for the rate controlling
mechanism in the case of optimal structural superplasticity
is calculated using the method outlined in [37]. For the case
of constant microstructure, the following equations are valid.

E=Ac" exp(_Q/kT); if it is taken that v = (1‘7/}15’1 ) (1a)

&= [%jc‘" exp(_%T); if it is taken that v = (1013571 ), (1b)

a:

where v is thermal vibration frequency. The constants A, and
A, are independent of 0 and T (but dependent on grain size),
but are inter-related; i. e., A,= (10"°A,.h/k). (The magnitude of
A, is determined empirically at the level of phenomenology,
but it can be computed ab initio in the physical model)
[13-14,19-21]. Q is the real activation energy for the rate
controlling process. Here h is the Planck constant, k is the
Boltzmann constant and 0*=(0/(ec)) is the dimensionless
stress, with e the base of the natural logarithms. o_ is the
stress at which m =1 in the dimensionless strain rate - stress
space (¢*—0* space) [12,37]. (It is readily seen that in these
calculations the strain rate is normalized with respect to unit
strain rate (1 s™') to make it dimensionless, i.e. €=(¢/1). In
view of this identity, € is used here onward without a star
symbol even though it is dimensionless. Moreover, it is
clear that the condition 0<o0*<1 is satisfied and as a result
a problem of convergence that could arise if any function of
stress were expanded in a power series is avoided.

The need to make stress dimensionless (0%), and the
physical meaning of the symbols o, p_are explained in detail
elsewhere [11-12,37]. For completeness, a short account
of the same is given in the Supplementary Material as
Appendixes S. A and S.B.
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During steady-state, isotropic superplastic deformation
in the optimal range, the stress exponent, # (the inverse of
the strain rate sensitivity index, m), is strongly dependent on
stress, grain size and temperature. It has been shown that the
solution for this case is [12,37]

(o)) 2o @

c

where p = (n,~1), with no the value of # as the stress/strain
rate tends to zero. (The notation p, is introduced in place
of (n,~1) to simplify the equation.) Thus, one finds that in
the optimal range of superplastic deformation n decreases
linearly with increasing stress. B and C are grain size- and
temperature-dependent constants. The above equations
have to satisfy two constraints [37]: (i) p, should decrease
with increasing temperature and always have a positive
value greater than or equal to 1 (based on the experimental
observations that n decreases with increasing temperature
and always has a value greater than or equal to 1) and o,
(the stress at which n=m=1 in the dimensionless ¢-c*space)
also should decrease with increasing temperature and
always have a value greater than o at every temperature.
(By convention, o is taken as positive for a tensile test).
(ii) Under isothermal and constant grain size conditions
p,=Co,_ (see Eq. (2)). That is, (CI./C(H)) should always be
equal to (polv/po(ifl))x(oc(ifl)/od), where the subscripts (i)
and (i-1) correspond to two different temperatures T, and
T .. p, and o_ values are calculated individually for the two
different isothermal tests, using a material of constant grain
size and Eq. (2). Further details are given in Supplementary
Material — see Appendixes S. A and S. B.

It has further been shown that the real activation energy
for the rate controlling process in superplastic flow is
calculated from the equation [37],

Iné=InA, +2p, +

(3a)
+(1+p0)ln(%ccj—p0(%J—%T,
Iné+InT =1InA, +2p, + (3b)

Ao 75 a7 )%

Evidently, the above equations correspond to the cases
v=(kT/h) or v=10"s" respectively.

When v=(kT/h), a plot of Inévs (1/T) at a constant value
of [2p,+(1+p,)In(o/ec ) - (p,0/0 )] is prepared, the slope of
which is equal to (—Q/k). The value of Q thus obtained should
be and has been verified to be independent of the magnitude
of [2p,+(1+p,)In(c/ec ) - (p,0/0 )], which is kept constant.
Similarly, when v=10" 57!, the slope of a plot of (Iné+1In T') vs
(1/T) at a constant value of [2p +(1+p ) In(c/ec) - (p,0/0 )]
is equal to (—Q/k). The value of Q thus obtained is, again,
independent of the magnitude of [2p +(1+p )In(o/ec,)~
—(p,0/0_)] that is kept constant [37]. Then, the real activation
energy for the rate controlling process during superplastic
flow, Q, is normalized with respect to (kT ) (or (RT,) (the
latter, if the value of Q is reported per mole) to render it
dimensionless and material-independent. The assumption
made while arriving at this last step is that the real activation

energy for a given deformation process in a material is a linear
function of its melting temperature on the absolute scale.

As mentioned earlier, superplastic deformation is (non-
Newtonian) viscoplastic [1-2,36]. When the von Mises yield
criterion is used (it is straightforward to use any other yield
criterion of choice; only the value of the numerical constant
(=3) will change [17,18]), by definition the apparent viscosity
is equal to (0/(3¢)). It is then normalized with respect to
the absolute viscosity, n, , (Newtonian viscosity), which is
obtained as (0 /(3¢ )), where € is the strain rate corresponding
to o_ (which is calculated from Egs. (2), (3a), (3b) for different
isothermal conditions), because o, by definition, is the stress
atwhich m =1 in the dimensionless log é—log o* space and £ is
the corresponding strain rate (Newtonian viscous flow). The
algorithm used for these computations is given in Fig. 1 and
the same algorithm was used to obtain the required numerical
values for the different classes of superplastic materials for
which adequate experimental data could be found. The
details of calculation are given in the Supplementary Material

as Appendix S. B.
‘ Start ’
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\4
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Fig. 1. Flow chart describing the algorithm used for the present work.
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3. Results

Table S1, given in the Supplementary Material, displays the
details of the normalization bases, the computed constants
and the normalized value (Q/kT ), in case of the different
classes of superplastic materials examined in this study
using the algorithm presented in Fig. 1. In all, experimental
data pertaining to 175 material conditions were analyzed.
Eq. (2) is solved by the method of least squares using the
particle swam optimization solver available in the pyswarm
package [38-39]. Relationships were plotted using the
computed values as curves in 2D and surfaces in 3D in the
relevant normalized spaces. The 2D plots are (Q/kT ) values
for superplastic materials of all classes, log(normalized
stress) vs. log (normalized strain rate); normalized m vs.
log (normalized strain rate); and log (normalized viscosity)
vs. log(normalized strain rate). The 3D surfaces are
log (normalized stress) vs. log(normalized strain rate) vs.
T, .; normalized m vs. log (normalized strain rate) vs. T, ;
and log(normalized viscosity) vs. log(normalized strain
rate) vs. T, .

The 2D plot of (Q/kT ) for different materials for
v=(kT/h)is given in Fig. 2 and the mean value of (Q/kT ) for
all classes of superplastic materials is estimated as 15.34 with
a standard deviation of £2.16, i.e. the steady state, isotropic,
optimal superplastic deformation in materials of all classes
has a real activation energy for the rate controlling process
which obeys the relation

(4)

The 2D plots of log (normalized stress) vs.log (normalized
strain rate), normalized m vs. log(normalized strain rate)
and log (normalized viscosity) vs. log (normalized strain rate)
were also constructed. Following usual practice [2-4], the
plots are divided into 3 domains based on the m value/strain
rate range and are given in Fig. 3a-i. A quadratic curve is
fitted to the 2D plots in each domain and the R* values (see
Appendix S.C, included as Supplementary Material, for
details) are calculated to estimate the deviation from the
mean curve.

The meaning of the symbols used in these plots, along
with the materials and the conditions of testing is given as
Fig. S3 in the Supplementary Material.

(Q/T )=15.34+2.16

A quadratic surface is fitted to the normalized data
ranging from the lowest strain rate to the highest strain rate
employed in the tests, i.e. in addition to the optimal region
of superplastic flow, the regions of non-optimal superplastic
deformation at either end of the optimal strain rate range
are also taken into account in these plots. The universal 3D
surfaces are presented in Fig. 4a-c.

4, Discussion

From the 2D plot (Fig. 2) of (Q/kT_) for different materials,
it is observed that the value of (Q/kT ) for superplastic
materials of all classes taken together is nearly constant
with a mean value of 15.34 and the actual values are evenly
distributed on either side of the mean line, regardless of the
material class. The relatively small deviation from the mean
line is most likely due to experimental scatter. It is clear
that the “common nature of the underlying rate controlling
mechanism” (whatever it is) is established in this normalized
space, particularly when one notes that the (Q/kT ) value
is obtained from a transcendental (exponential) equation,
which, by its nature, can lead to significant scatter in the
computed values, see Egs. (1) and (3).

The mean curve equations and the R*> values for
the normalized plot of log(stress) vs. log(strain rate)
(Fig. 3a—c) are given as Eq. (5). Similarly, for the normalized
m-normalized log (strain rate) plots (Fig. 3d-f) the mean
curve equations are available as Eq. (6). It is clearly seen
that the correlation is the best in the optimal range of
log (stress) -log (strain rate) and m-log(strain rate) plots
where the condition 0.3<m<m__ is obeyed. The fit is “least
good” inthe domain 0 <m < 0.3 where thelow m value s traced
at least in some physical models to the presence of a threshold
stress that should be overcome for the onset of dominant grain
boundary sliding (see, for example, [2-4,13-21,40-41]).
Taking the particular model in Padmanabhan et al. [see,
for example, 13,14,20], as an example, it can be pointed out
that the threshold stress necessary for the onset of large scale
(mesoscopic) grain boundary sliding, say, in an intermetallic
will be significantly more than that required for a pseudo-
single phase superplastic alloy. This is the origin of the greater
scatter in this lower non-optimal superplastic region. The fit is
better, although still “less good” than in the optimal region, at

25 -
° ® Metals and alloys
20 - »
X
° . Intermetallics
E1s e ..-. i
E ° ° ° .". . e Ceramics/Composites
o4
10 14 Bulk metallic glasses
* Geological materials & Ice
5 B
v —KT/h ¢ Nanostructured materials
0 r T T T s
0 10 20 30 40 50
Systems

Fig. 2. (Color online) (Q/kT ) vs. Superplastic materials.
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Fig. 3. (Color online) 2D plots normalized stress-normalized strain rate curves (a-c), normalized m-normalized strain rate curves (d-f),

normalized viscosity-normalized strain rate curves (g-i). 0<m<0.3 (a), 0.3<m<m,__ (b), &> é\\pl;

where m<m__ (c), 0<m<0.3 (d),

03<m<m__ (e),€>¢ o0 where m<m__(f),0<m<0.3(g),0.3<m<m__(h), &> éop‘; where m<m__(i).

0

the upper end of strain rate (beyond éopt) where in most of the
models dislocation processes are considered to be responsible
for the loss of Superplasticity. In this range the response of
different classes of materials is likely to be less different than
in the lower end of strain rates of Superplasticity loss arising
from a widely varying magnitude of the threshold stress for
the onset of dominant grain boundary sliding. Nevertheless,
dislocation flow characteristics are significantly affected by
the crystal structure of materials, different phases present
and their composition, which are different for different
superplastic materials. Hence the poorer fit in this region
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compared with that present in the optimal strain rate range
in which mesoscopic grain boundary sliding controls the rate

of flow.
. 2 .
log| —2- |=0.0837-| log| = | | +0.5814-log| —=— |+0.0956, (5a)
Gopl aopl opt
R’ value =0.63; 0<m<0.3,
. 2 .
log(cj =0.02924- 1og[_8] +0.4781»10g[_gJ0.0088, (5b)
Gopt opt opt

R*value=0.96; 0.3<m<m

‘max >
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G opt Sopl 8opt (SC)

2 — .o &~ .
R*value=0.84; ¢ > sopl,where m<m_.,

12
M 0.02884- [log[_ej +0.4195- log[,aj +1.187,
mmax Sopl i 8opt (63.)
R*value =0.70; 0 < m < 0.3,
. T .
00651 1-{log[,8] +0.09823- log[,s] +1.0082,
‘max 8opl i aopt (6b)
R*value=0.84;0.3<m<m,__,
. 2 .
mo_ —0.092-[log[,sﬂ ~0.1029- log[,s}u 1.01,
mmax 8opt 8opt (6C)

R*value=0.77;¢ >¢_; where m<m___.
max

opt?

The mean curve equations and the R? values for the
normalized plot of viscosity-strain rate relationship
(Fig. 3g-1i) are given in Eq. (7). It can be observed that in all
the 3 domains, as defined above, the distribution of points
is nearly the same with respect to the mean curve. R* values
for all the 3 domains are also almost equal. Evidently, the
normalized viscosity of the materials is (almost) independent
of the rate controlling mechanism as well as the material and
its class. This is understandable because viscosity is a material
property, while the other variables considered like stress,
strain rate and m value are strongly related to the deformation
mechanisms present.

£

SH —O.768~log[ J—0.054, (
€ 7a)

log [nj =-0.0058-| log
nabs €
R*value =0.84;0 <m < 0.3,
£

2
log[ ] = —0.0460~{10g{.sﬂ 0.63714~1og[_]+0,14,
gopt Sopt (7b)

R*value=0.82;0.3<m<m
. 2 .
log(nJ =-0.1027-| log| = || —0.3982log| — |+0.123,
Mabs Eopt Eopt

2 — .o & .
R*value=0.87;¢>¢,  ;wherem<m, .

opt opt

n

1,]abs

(7¢)

The quadratic equations for the 3D surfaces (Fig. 4a-c¢)
are given below, along with the corresponding R* values.
Very good correlation is found for the entire strain rate range
for all the 3 plots and the highest correlation between the
experimental results and the predictions is found for viscosity

for reasons already stated.
. 2
2] 01213
Sopt

log[c] = 0.00967~{10g[
(o)
opt

T

~0.0472-log| - |- T,
8apl

+0.141-T,  —0.0591; R’ value = 0.92,

T

hom

)2_

: 8
+0.4344. log[_SJ . @
€
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2
T~ _0.1215-| log| = || —0.01274(T;,, )" +
mmax gopt
+0.042-log| —— |- T, —0.042-log| —— |+ ®)
Sopt 8opt
+0.0338-T,, +0.9505; R* value = 0.88,
. 2
log[nj:0.0MZ- log| —— || +0.0116(T,,, ) +
T]abs 8opt
: : 10
+o.0139-1og(_8J-Thcm—o.ew&logfg} (10)
e
opt opt

+0.039-T, +0.1054; R* value =0.94.

hom

It is worthy of noting that the R? values are greater (and
hence the accuracy of fit superior) for the 3D plots than for
the 2D plots. This is because in the 2D plots, the normalized
log (stress) vs. log (strain rate), normalized m vs. log (strain
rate) and the normalized log (viscosity) vs. log(strain rate)
relationships are plotted ignoring the fact that all these values
do not correspond to the same homologous temperature. In
contrast, in the 3D plots the variation of these relationships
with respect to the homologous temperature is also taken
into account. When this is done, even in the non-optimal
strain rate ranges (very low strain rates where m<0.3 as
well as when &> éopt) the threshold stresses and the stresses
needed to drive the dislocation processes respectively for the
different materials get normalized with respect to the melting
temperature of the material concerned and the “universal
surface” thus obtained covers very accurately the entire
strain rate range employed in the experiments involving the
superplastic materials of all classes. Thus, there is a strong
case to suggest that Egs. (4) - (6), (8) - (10) describe uniquely
superplastic deformation in materials of all classes examined
in this paper with a high degree of accuracy. Such a conclusion
is equivalent to suggesting that a unique physical mechanism
of deformation is present in the optimal region of steady state
isotropic superplastic flow regardless of the material or its
class, where the fit is the best between the experimental data
and the predicted sigmoidal curve that describes constant
grain size, isothermal superplastic flow [1-2,4,21].

5. Consequences

The above analysis leads to the following important
conclusions.

1. The real activation energy for the rate controlling
process in the region of steady state, isotropic, optimal
superplastic flow in all classes of materials divided by (RT ),
where R is the gas constant and T _ is the melting point of the
material concerned, is of a constant value, given by Eq. (4). As
the melting temperature compensated real activation energy
for materials of all classes is the same, a case could be made
out that the physical mechanism responsible for controlling
the rate of flow in the steady state, isotropic, optimal region
of superplastic deformation is the same for materials of all
classes.
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Fig. 4. (Color online) Universal surfaces log (normalized stress) vs. log (normalized strain rate) vs. T, (a), normalized m vs. log (normalized

strain rate) vs. T,

hom

2. Eqgs. (8)-(10) describe superplastic deformation in
all classes of materials accurately. That is, in normalized space
the superplastic response of materials of all classes, investigated
employing widely varying experimental conditions, can be
represented by these equations. Eqs. (5) - (7), on the other hand,
make it clear that the fit is the best in the optimal region of
isotropic, steady state superplastic flow. These observations
also suggest that the underlying rate controlling mechanism in
the optimal region of flow in all classes of materials is the same.

The above conclusions are arrived at by analyzing data
pertaining to 175 material states, which include metals and
alloys, ceramics, intermetallics, composites, nanostructured
materials, bulk metallic glasses, geological materials and

(b), and log (normalized viscosity) vs. log (normalized strain rate) vs. T,
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(c).

hom

ice/ice-mixture. Therefore, confidence can be placed on these
conclusions.

A survey of literature reveals that most workers suggest
different rate controlling mechanisms for the optimal
superplastic flow region in different materials, which is
not consistent with the present findings based on the
phenomenological description of the deformation process.
However, there is an exception. In a series of publications,
a physics-based model for grain boundary sliding (GBS)
that develops to a mesoscopic scale (defined to be of the
order of a grain diameter or more) has been proposed and
it has been suggested that this process controls the rate of
steady state isotropic optimal superplastic deformation in
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different classes of materials. This model has been verified
and validated by carefully performed experiments and an
analysis of the experimental data pertaining to different
classes of superplastic materials. A detailed description
of that model and its verification and validation can be
found elsewhere [13-21,40-41]. In a recent paper [20],
by analyzing the experimental data pertaining to different
classes of superplastic materials (of 40 different chemical
compositions and different constituent phases), it has been
possible to propose a methodology for predicting the steady
state, isotropic, optimal superplasticity of even so far untested
materials with the help of four universal constants, whose
values are given in the paper under reference [20]. This
procedure requires no new experiments for describing steady
state, isotropic, optimal superplastic flow in any, including
untested, materials to an order of magnitude accuracy. The
present work suggests that this approach has an edge over the
other models proposed to date.

As Egs. (4)-(6), (8)-(10) represent superplastic
materials of all classes, optimal alloy design becomes possible.
This possibility is briefly explained here with an example.
Suppose one decides to develop a superplastic material with,
say, titanium as the major constituent. From Eq. (4) one can
obtain the likely real activation energy, Q, the material should
have. This value is then compared with the real activation
energy of pure titanium. As pointed out earlier, in this
approach Q is directly related to the shear modulus. Suitable
alloy additions to Ti are known from the literature, e.g. AL, V
etc. The shear moduli of different elements are listed by Frost
and Ashby [42]. Using the rule of mixtures and past empirical
knowledge available in literature, the percentages of the other
elements to be added can be decided. Evidently, such an alloy
has to be tested at conditions where m=m__ . In Eq. (9), put
m=m__. Decide the homologous temperature at which one
wants to superplastically form this alloy. Then, solving Eq. (9)
the strain rate at which the alloy should be deformed for the
best results can be known.

It should be noted, however, that the average values
for numerous alloys have been used to arrive at the above
equations. Therefore, a few fine tuning experiments would
be necessary to freeze the deformation conditions. But, such
tests will be far less in number than would be the case with a
trial and error approach. Focused research in this direction is
likely to be very rewarding.

The experimental data analyzed in this paper correspond
to a single starting microstructure in case of every material
studied. It is highly desirable that the effect of grain size
variation on superplastic deformation (by changing
the starting grain size of every alloy) also is studied in
great depth similar to the effects of strain rate, stress and
temperature which have already been focused on. When
such sets of experimental data are available, one will have to
include one more normalized parameter in the analysis, viz.,
normalized grain size, i.e. the actual grain size divided by a
rather large grain size at which superplastic effects would be
absent/negligible.

From a practical point of view, it is desirable to extend
the theoretical treatment (in the form of simulations) using
Fig. 1 of [14] as the Representative Volume Element (RVE),
employ the Phase Field Method coupled to Finite Element
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Method, for example, and analyze the bulk and sheet metal
deformation of superplastic materials. Efforts in this regard
have just commenced.

6. Conclusions

The “universal nature” of steady state isotropic, optimal
superplastic deformation, i.e., the presence of material-
independent 2D and 3D plots for the measurable parameters
of superplastic deformation in materials of all classes in
properly normalized spaces, is demonstrated with a high
degree of accuracy by presenting these plots in dimensionless
forms, i.e. normalized log(stress)-normalized log (strain
rate) -homologous temperature; normalized strain rate
sensitivity index - normalized log (strain rate) - homologous
temperature; ~ normalized  log(viscosity) - normalized
log (strain rate) -homologous temperature and melting
temperature compensated activation energy for the rate
controlling process in optimal superplastic deformation
range vs. superplastic materials of different classes. This
insight should facilitate a more efficient design and use of
superplastic materials. That the ratio (Q/RT ) is nearly
constant for superplastic materials of different classes is
yet another argument in favor of a common origin of the
phenomenon of Optimal Structural Superplasticity. The
very close proximity of the curves for different materials
becomes less close as one moves away from the optimal
range of superplastic flow. At the lower region of strain
rate, the decrease in the m value below =0.3 and the loss
of superplasticity is attributed in some approaches to the
presence of a threshold stress, which could vary significantly
from one material to the next. This makes the superposition
of curves for the different materials less good in the region
0<m<0.3. At the higher extremes of strain rates (¢> éopt),
the loss of Superplasticity is traced in many models to
deformation processes like dislocation glide, climb etc.,
which are strongly dependent on the crystal structure,
alloy composition and the phases present. In this range also
the fit is less good than what is seen in the optimal range.
Therefore, in both the non-optimal superplastic flow regions
present at either end of the optimal range, the superposition
of the curves pertaining to different materials is less good.
Therefore, it is concluded based on the phenomenology of
superplastic flow that the occurrence of this phenomenon
in the optimal region of deformation in materials of all
classes has a common origin. Among the several models
proposed to date in order to explain steady state optimal,
isotropic Structural Superplasticity, one model, in which
grain boundary sliding develops to a mesoscopic scale
and controls the rate of deformation, meets this criterion
imposed by the phenomenology of the flow process that
a single mechanism should be able to describe this near-
ubiquitous phenomenon.

Supplementary material. The online version of this paper
contains supplementary material available free of charge at the
journal's Web site (lettersonmaterials.com).
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