# Magnetic and magnetocaloric properties of as-cast Gd, In

S. V. Taskaev<sup>†,1,2,3</sup>, V. V. Khovaylo<sup>2,3</sup>, M. N. Ulyanov<sup>1</sup>, D. S. Bataev<sup>1</sup>, A. A. Basharova<sup>1</sup>,

M. V. Kononova<sup>1,3</sup>, D. V. Plakhotskiy<sup>1</sup>, M. Yu. Bogush<sup>1</sup>, D. A. Zherebtsov<sup>2</sup>

# †tsv@csu.ru

<sup>1</sup>Chelyabinsk State University, Chelyabinsk, 454001, Russia <sup>2</sup>National Research South Ural State University, Chelyabinsk, 454080, Russia <sup>3</sup>National University of Science and Technology "MISIS", Moscow, 119049, Russia

This paper presents results of experimental studies of magnetic and magnetocaloric properties of as-cast polycrystalline samples of a Gd<sub>2</sub>In intermetallic compound, which crystallizes into a hexagonal structure of the Ni<sub>2</sub>In type. Measurements of the field and temperature dependences of the magnetization carried out in a temperature range from 50 to 300 K and in magnetic fields up to 3 T showed that the as-cast Gd<sub>2</sub>In samples undergo ferromagnetic ordering upon cooling below Curie temperature  $T_c$ =194 K. With further cooling, a metamagnetic transition from the ferromagnetic into an antiferromagnetic phase is observed at a temperature  $T_m$ =95 K, which is accompanied by pronounced anomalies in the temperature and field dependences of the magnetization. An external magnetic field stabilizes the ferromagnetic phase, shifting  $T_m$  toward low temperatures. The isothermal magnetic field changes from 0 to 3 T, reaches its maximum value  $\Delta S_m$ =-3.25 J/kg·K. The temperature dependence of  $\Delta S_m$  clearly indicates a crossover of the magnetocaloric effect from direct to inverse one, which occurs in the vicinity of the metamagnetic transition. The experimental data obtained in our work on unannealed Gd<sub>2</sub>In samples. Thus, the results of this work indicate that the attainment of a homogeneous state in polycrystalline Gd<sub>2</sub>In samples, which can affect their magnetic properties, can occur during cooling of the as-cast ingot on a cold crucible and does not require an additional heat treatment.

Keywords: magnetocaloric effect, metamagnetic transition, Curie temperature, gadolinium alloys.

УДК: 537.6

# Магнитные и магнитокалорические свойства литого Gd, In

Таскаев С. В.<sup>†,1,2,3</sup>, Ховайло В. В.<sup>2,3</sup>, Ульянов М. Н.<sup>1</sup>, Батаев Д. С.<sup>1</sup>, Башарова А. А.<sup>1</sup>,

Кононова М. В.<sup>1,3</sup>, Плахотский Д. В.<sup>1</sup>, Богуш М. Ю.<sup>1</sup>, Жеребцов Д. А.<sup>2</sup>

<sup>1</sup>Челябинский государственный университет, Челябинск, 454001, Россия

<sup>2</sup>Южно-Уральский государственный университет (национальный исследовательский университет),

Челябинск, 454080, Россия

<sup>3</sup>Национальный исследовательский технологический университет «МИСиС», Москва, 119049, Россия

В данной работе представлены результаты экспериментальных исследований магнитных и магнитокалорических свойств литых поликристаллических образцов интерметаллического соединения  $\text{Gd}_2\text{In}$ , которое кристаллизуется в гексагональную структуру типа Ni<sub>2</sub>In. Измерения полевых и температурных зависимостей намагниченности, выполненных в температурном интервале от 50 до 300 К и в магнитных полях до 3 Тл показали, что литые образцы  $\text{Gd}_2\text{In}$  претерпевают ферромагнитное упорядочение при охлаждении ниже температуры Кюри  $T_c$ =194 К. При дальнейшем охлаждении наблюдается метамагнитный переход из ферромагнитной в антиферромагнитную фазу при температуре  $T_m$ =95 К, что сопровождается ярко выраженными аномалиями на температурных и полевых зависимостях намагниченности. Внешнее магнитное поле стабилизирует ферромагнитную фазу, смещая  $T_m$  в область низких температур. Изотермическое изменение магнитной энтропии  $\Delta S_m$ , вычисленное при помощи соотношения

Максвелла, демонстрирует пик при температуре Кюри, который при изменении магнитного поля от 0 до 3 Тл достигает максимального значения  $\Delta S_m = -3.25 \text{ Дж/кг} \cdot \text{K}$ . Зависимость  $\Delta S_m$  от температуры ясно указывает на кроссовер магнитокалорического эффекта от прямого до инверсного, который происходит в окрестности метамагнитного перехода. Экспериментальные данные, полученные в нашей работе на неотожженных образцах Gd<sub>2</sub>In, находятся в хорошем качественном и количественном согласии с данными, опубликованными для отожженных образцов Gd<sub>2</sub>In. Таким образом, результаты данной работы указывают на то, что достижение гомогенного состояния в поликристаллических образцах Gd<sub>2</sub>In, которой может влиять на их магнитные свойства, может происходить в процессе охлаждения литого слитка на холодном поду и не требует дополнительной термообработки.

Ключевые слова: магнитокалорический эффект, метамагнитный переход, температура Кюри, сплавы гадолиния.

#### 1. Введение

В последние годы идея использования магнитокалорического эффекта (МКЭ) в технологии ожижения природных и криогенных газов привлекает растущее внимание исследователей [1]. Этот интерес обусловлен с одной стороны низкой эффективностью традиционных методов ожижения газов при температурах ниже 150 К, а с другой стороны — существенным прогрессом в разработке сверхпроводящих магнитов, которые могут генерировать сильные магнитные поля, до 22 Тл. Принимая во внимание, что МКЭ, а именно изотермическое изменение магнитной энтропии  $\Delta S_m$ , в окрестности магнитных фазовых переходов 2-го рода зависит от приложенного магнитного поля как  $-\Delta S_{m} \sim H^{2/3}$  [2], идея применения технологии магнитного охлаждения в сильных магнитных полях сверхпроводящих соленоидов для ожижения газов имеет большую практическую значимость. С материаловедческой точки зрения, для реализации этой идеи необходимо исследовать особенности магнитокалорического эффекта в сильных магнитных полях и отработать технологию получения магнитокалорических материалов.

Подавляющее большинство материалов, в которых наблюдается существенный МКЭ в криогенной области температур, представляют собой редкоземельные сплавы и соединения [3]. Большой магнитокалорический эффект в этих материалах обусловлен главным образом большим магнитным моментом этих соединений, в частности соединений на основе Gd. Так, исследования интерметаллидов Gd<sub>3</sub>T (T — 3d или 4d переходной металл) показали, что в Gd<sub>3</sub>Co, Gd<sub>3</sub>Ni и Gd<sub>3</sub>Rh наблюдаются сравнительно небольшие величины МКЭ, что обусловлено доминированием антиферромагнитных взаимодействий в этих соединениях. Наиболее яркий МКЭ,  $\Delta S_{m} = -30$  Дж/кг·К при изменении магнитного поля на 5 Тл, был обнаружен в соединении Gd<sub>2</sub>Ru, которое претерпевает магнитный фазовый переход 1-го рода при температуре Кюри T<sub>c</sub> = 54 К [4]. Рассматривая магнитокалорические свойства других соединений на основе Gd, необходимо упомянуть фазу Лавеса GdNi, где МКЭ исследовался в магнитных полях до 50 Тл [5], фазу Лавеса GdAl,, в которой ярко проявляется взаимосвязь между структурными и магнитными свойствами [6] и интерметаллическое соединение Gd, In, в котором наблюдается метамагнитный переход при температурах ~100 К [7], сопровождаемый инверсией знака МКЭ [8].

Принимая во внимание перспективы практических применений этих материалов, необходимо, наряду с магнитокалорическими свойствами, исследовать также зависимость этих свойств от метода получения и режимов термообработки экспериментальных образцов. Как правило, поликристаллические образцы редкоземельных соединений получают методом дуговой или индукционной плавки. После этого образцы отжигаются в вакууме или атмосфере аргона при высоких температурах в течении длительного времени; причем выбор параметров термообработки как правило не обосновывается. Так, в случае соединения Gd<sub>2</sub>In температура отжига варьировалась от 973 К [8,9] до 1073 К [10], а сам отжиг занимал время от 2 до 5 дней [8,9,11]. Насколько нам известно, ни для Gd<sub>2</sub>In, ни для других бинарных соединений гадолиния вопросы взаимосвязи режимов термообработки и магнитных свойств в литературе не освещались. Принимая во внимание, что термообработка является затратной процедурой как с точки зрения ресурсов, так и времени, в данной работе были выполнены исследования магнитных свойств неотожженных образцов Gd,In и сравнение этих свойств с доступными в литературе данными, полученными на подвергнутых термообработке образцах этого соединения.

#### 2. Детали эксперимента

Поликристаллический слиток Gd<sub>2</sub>In был получен методом дуговой плавки на водоохлаждаемом медном поду в защитной атмосфере чистого аргона с использованием неплавящегося вольфрамового электрода из исходных высокочистых химических элементов Gd (чистота 99.98 ат.%) и In (чистота 99.998 ат.%). Для достижения однородности по химическому составу слиток переплавлялся трижды. После выключения дуги литой слиток остывал в камере дуговой печи. Никакой дополнительной термообработки впоследствии не проводилось.

Рентгеноструктурный и рентгенофазовый анализ проводился при комнатной температуре на рентгеновском дифрактометре Rigaku Ultima IV с использованием Cu<sub>ка</sub>-излучения. Элементный состав литого слитка исследовался на энергодисперсионном рентгенофлуоресцентном спектрометре ARL QUANT'X и растровом электронном микроскопе JEOL JSM-6510LA. Все магнитные измерения проводились с использованием

магнитометра Versa Lab компании Quantum Design в соответствии со стандартными процедурами измерения при температурах от 50 до 300 К и в магнитных полях до 3 Тл.

### 3. Результаты и обсуждение

На Рис. 1 представлена дифрактограмма Gd<sub>2</sub>In, полученная при комнатной температуре. Кристаллическая структура исследуемого соединения является гексагональной (структурный тип Ni<sub>2</sub>In) с параметрами решетки a=b=0.5461 нм, c=0.6771 нм и  $\alpha=\beta=90^{\circ}$ ,  $\gamma=120^{\circ}$ , которые находятся в хорошем согласии с параметрами решетки отожженных образцов [7,10]. Судя по рентгеновским данным (Рис. 1) литой образец Gd<sub>2</sub>In примесных фаз не содержит.

Температурные зависимости намагниченности *М*(*T*) литого Gd<sub>2</sub>In, измеренные при охлаждении в магнитных полях от 0.1 до 3 Тл с шагом 0.1 Тл представлены на Рис. 2. Видно, что в слабых магнитных полях на зависимостях M(T) наблюдаются две аномалии, в окрестности 200 и 100 К, которые соответствуют установлению магнитного упорядочения и метамагнитному переходу, соответственно. При этом низкотемпературная аномалия постепенно размывается при увеличении напряженности внешнего магнитного поля и полностью исчезает в магнитных полях выше 2 Тл (Рис. 2). Определенная из зависимости M(T), измеренной в магнитном поле 0.1 Тл, температура Кюри и температура метамагнитного перехода литого Gd<sub>2</sub>In была найдена равной T<sub>c</sub>=194 К и T<sub>m</sub>=96 К, соответственно. Эти значения хорошо согласуются с данными, полученными для отожженных поликристаллических образцов (*T*<sub>с</sub>≈187 К и Т.,≈100 К) [7,9].

Говоря о природе матамагнитного перехода, который наблюдается в нашем образце при T<sub>m</sub>=96 К, в настоящее время предполагается, что метамагнитная аномалия соответствует переходу из ферромагнитной в антиферромагнитную фазу. Отметим, что детальная картина упорядочения спинов в низкотемпературной антиферромагнитной и высокотемпературной ферромагнитной структуре остается невыясненной до наших дней из-за сильного поглощения нейтронов гадолинием, что не позволяет применять для Gd-содержащих соединений метод установления магнитной структуры с помощью дифракции нейтронов. Хотя ферромагнитное упорядочение спинов в высокотемпературной магнитной фазе Gd<sub>2</sub>In не вызывает сомнений у большинства исследователей, в ряде работ было предположено [12,13], что конфигурация спинов в низкотемпературной магнитной фазе скорее всего не является коллинеарной.

Как уже отмечалось выше, и как следует из Рис. 2, температура метамагнитного перехода  $T_m$  быстро понижается при увеличении напряженности внешнего магнитного поля. Приведенная в литературе оценка чувствительности  $T_m$  ко внешнему магнитному полю в отожженном Gd<sub>2</sub>In дает значение порядка 97 К/Тл [11]. В случае литого Gd<sub>2</sub>In полевая зависимость намагниченности M(H), измеренная при T=50 К (Рис. 3) демонстрирует ярко выраженное изменение характера кривой



**Рис. 1.** Рентгенограмма образца Gd<sub>2</sub>In, снятая при комнатной температуре.

Fig. 1. X-ray pattern taken from Gd<sub>2</sub>In sample at room temperature.



**Рис. 2.** Температурные зависимости литого Gd<sub>2</sub>In, измеренные в магнитных полях от 0.1 до 3 Тл.

**Fig. 2.** Temperature dependences of magnetization for as-cast  $Gd_2In$ , measured in magnetic fields from 0.1 to 3 T.



**Рис. 3.** Петля гистерезиса литого  $\text{Gd}_2$ In, измеренная при T = 50 K. **Fig. 3.** Hysteresis loop of the as-cast  $\text{Gd}_2$ In, measured at T = 50 K.

от типичного для антиферромагнетиков линейного хода до быстрого роста M при достижении критической величины магнитного поля, равной 0.34 Тл (Рис. 3). Очевидно, что изменение хода кривой намагниченности при H=0.34 Тл соответствует магнитоиндуцированному переходу от антиферромагнитного к ферромагнитному упорядочению. Таким образом, грубая оценка чувствительности метамагнитного перехода к внешнему магнитному полю в литом Gd<sub>2</sub>In дает величину ~135 К/Тл. Определенная методом экстраполяции намагниченность насыщения литого Gd<sub>2</sub>In при T=50 К (Рис. 3) была найдена равной 154 А·м<sup>2</sup>/кг, что хорошо согласуется в данными для отожженных образцов [8].

Изотермическое изменение магнитной энтропии  $\Delta S_{m}$ , вычисленной из данных экспериментальных измерений намагниченности при помощи соотношения Максвелла, показано на Рис. 4. Можно отметить следующие характерные особенности температурных зависимостей  $\Delta S_m$ . Во-первых,  $\Delta S_m$  демонстрирует четкий пик при T=196 К, что практически совпадает с температурой Кюри этого образца Т<sub>с</sub>=194 К. Величина этого пика возрастает при росте величины изменения приложенного магнитного поля и достигает значения  $\Delta S_m = -3.25$  Дж/кг·К при изменении магнитного поля  $\Delta H = 3$  Тл (Рис. 4). Это значение практически совпадает с величиной изотермического изменения магнитной энтропии  $(\Delta S_m = -3.5 \ \text{Дж/кг·K})$ , которое сообщалось для отожженных образцов Gd<sub>2</sub>In [8,11] и допированного алюминием сплава Gd<sub>2</sub>In<sub>0.8</sub>Al<sub>0.2</sub> [14]. При температурах ниже 100 К, где наблюдается метамагнитный переход, происходит смена знака МКЭ. Такое поведение  $\Delta S_{m}$ определяется тем фактом, что в окрестности метамагнитного перехода высокотемпературная ферромагнитная фаза является более упорядоченной, чем низкотемпературная антиферромагнитная фаза. Подобное поведение сообщалось и для других систем, претерпевающих метатагнитные переходы из более упорядоченной в менее упорядоченную фазу, таких как соединение FeRh [15], сплав Гейслера Ni-Mn-Sn [16] и др.

## 4. Заключение

В данной работе представлены результаты экспериментальных исследований магнитных и магнитокалорических свойств литого интерметаллического соединения Gd<sub>2</sub>In. Наиболее интересным и значимым результатом нашей работы является то, что магнитные свойства и характеристики магнитокалорического эффекта изученных в нашей работе неотожженных образцов Gd<sub>2</sub>In ничем не уступают образцам, подвергнутым тщательной и долговременной термообработке. Представляется вероятным, что идентичность магнитных свойств отожженных и неотожженных образцов обусловлено тем фактом, что Gd<sub>2</sub>In является упорядоченным интерметаллическим соединением, область существование которого на двойной фазовой диаграмме Gd-In простирается от комнатных температур вплоть до температуры плавления 1453 К [17]. Таким образом, используемый рядом исследователей отжиг и закалка от высоких температур порядка 900-1100 К



**Рис. 4.** (Color online) Изотермическое изменение магнитной энтропии  $\Delta S_m$  в литом Gd<sub>2</sub>In при изменении магнитного поля на 1, 2 и 3 Тл.

**Fig. 4.** (Color online) Isothermal magnetic entropy change  $\Delta S_m$  in the as-cast Gd<sub>2</sub>In for the magnetic field change 1, 2, and 3 T.

не приводит к существенному улучшению структурного упорядочения по сравнению с литыми образцами, которые не прошли термообработку. Более того, некоторое расширение области стабильности Gd<sub>2</sub>In при высоких температурах [17] может приводить к формированию дефектов упаковки при закалке образцов с нестехиометрическим содержанием In. Наряду с этим, полученные нами результаты указывают на то, что в некоторых случаях представляется возможным избежать затратной процедуры термообработки редкоземельных интерметаллидов, которые в будущем могут найти практическое применение в качестве рабочего тела для работающих на МКЭ устройств для ожижения криогенных газов.

Благодарности/Acknowledgements. Работа выполнена при поддержке Российского научного фонда (грант № 18-42-06201). / This work was supported by the Russian Science Foundation (Grant No. 18-42-06201).

### Литература/References

- H. Zhang, R. Gimaev, B. Kovalev, K. Kamilov, V. Zverev, A. Tishin. Physica B. 558, 65 (2019). <u>Crossref</u>
- 2. H. Oesterreicher, F.T. Parker. J. Appl. Phys. 55, 4334 (1984). <u>Crossref</u>
- A.S. Andreenko, K.P. Belov, S.A. Nikitin, A.M. Tishin. Physics - Uspekhi. 32, 649 (1989). <u>Crossref</u>
- J. C. B. Monteiro, R. D. dos Reis, F. G. Gandra. Appl. Phys. Lett. 106, 194106 (2015). <u>Crossref</u>
- S. Taskaev, V. Khovaylo, K. Skokov, W. Liu, E. Bykov, M. Ulyanov, D. Bataev, A. Basharova, M. Kononova, D. Plakhotskiy, M. Bogush, T. Gottschall, O. Gutfleisch. J. Appl. Phys. 127, 233906 (2020). <u>Crossref</u>
- V. G. de Paula, L. M. da Silva, A. O. dos Santos, R. Lang, L. Otubo, A. A. Coelho, L. P. Cardoso. Phys. Rev. B. 93, 094427 (2016). <u>Crossref</u>

- 7. S. P. McAlister. J. Phys. F: Met. Phys. 14, 2167 (1984). Crossref
- A. Bhattacharyya, S. Giri, S. Majumdar. J. Magn. Magn. Mater. 324, 1239 (2012). <u>Crossref</u>
- 9. V. Singh, A. Bhattacharyya, S. Majumdar, I. Dasgupta. J. Appl. Phys. 111, 053709 (2012). <u>Crossref</u>
- 10. W. Baela, A. Szytula. J. Less-Comm. Met. 138, 123 (1988). <u>Crossref</u>
- Y. Yang, Y. Xie, X. Zhou, H. Zhong, Q. Jiang, S. Ma, Z. Zhong, W. Cui, Q. Wang. AIP Adv. 8, 056406 (2018). Crossref
- 12. C.-S. Jee, C.L. Lin, T. Mihalisin, X.-Q. Wang.J. Appl. Phys. 79, 5403 (1996). <u>Crossref</u>
- 13. P.A. Stampe, X.Z. Zhou, H.P. Kunkel, J.A. Cowen,

G. Williams. J. Phys.: Condens. Matter. 9, 3763 (1997). Crossref

- S. Tencé, B. Chevalier. J. Magn. Magn. Mater. 399, 46 (2016). <u>Crossref</u>
- E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, L. Mañosa. Phys. Rev. B. 89, 214105 (2014). <u>Crossref</u>
- V.V. Khovaylo, K.P. Skokov, O. Gutfleisch, H. Miki, T. Takagi, T. Kanomata, V.V. Koledov, V.G. Shavrov, G. Wang, E. Palacios, J. Bartolomé, R. Burriel. Phys. Rev. B. 81, 214406 (2010). <u>Crossref</u>
- 17. A. Palenzona, S. Cirafici. Bulletin of Alloy Phase Diagrams. 10, 234 (1989). <u>Crossref</u>