Синтез материала с Na⁺ суперионной проводимостью на основе Al₂O₃-пилларированного монтмориллонита

Бутман М.Ф.[†], Овчинников Н.Л., Нуралыев Б., Арбузников В.В.

Ивановский государственный химико-технологический университет, Шереметьевский просп. 7, 153000 Иваново

[†]butman@isuct.ru

Synthesis of a material with Na⁺ superionic conductivity based on Al₂O₃-pillared montmorillonite

M.F. Butman, N.L. Ovchinnikov, B. Nuralyev, V.V. Arbuznikov

Ivanovo State University of Chemistry and Technology, Sheremetevsky prosp. 7, 153000 Ivanovo

Предложена методика синтеза материалов с суперионной проводимостью по ионам щелочных металлов на основе слоисто-столбчатых алюмосиликатов. Измерена электропроводность Al_2O_3 -пилларного монтмориллонита, допированного ионами натрия, которая существенно выше, чем у исходного монтмориллонита и его обогащенной ионами Na+ формы, и достигает рекордных значений, обнаруженных ранее у бета-глиноземной керамики.

Ключевые слова: монтмориллонит, пилларированный монтмориллонит, ионная проводимость, твердый электролит, суперионный проводник.

1. Введение

Развитие ионики твердого тела связано с синтезом и исследованием свойств материалов, обладающих суперионной проводимостью ($\sigma > 10^{-3}$ См см⁻¹ при T = 300К) [1]. При этом особый интерес представляют суперионные проводники с Li⁺ и Na⁺ ионной проводимостью. Такие материалы незаменимы при создании твердотельных топливных элементов, миниатюрных аккумуляторов, сенсоров и др. Их поиск ведется среди различных веществ, которые обладают либо высокой степенью дефектности из-за разупорядочения одной из кристаллических подрешеток, либо особенностями структуры, связанными с наличием каналов ионной проводимости. Исследования проводятся в двух направлениях: улучшение характеристик известных твердых электролитов и синтез принципиально новых проводящих матриц [2-5]. Второй путь подразумевает создание материалов с ажурной структурой, пригодной для заполнения "ионным расплавом". В качестве исходных материалов целесообразно использовать природные минералы, создавая кристаллические матрицы на их основе. Например, известны катионные проводники в семействе сложных The procedure of synthesis of alkali superionic conductors based on pillared layered aluminosilicates is proposed. The conductivity of Al_2O_3 -pillared montmorillonites doped with sodium ions is measured. It is much higher than those of raw montmorillonite and that enriched with Na+ and attains record values found earlier for beta-alumina ceramics.

Keywords: montmorillonite, pillared montmorillonite, ionic conductivity, solid electrolyte, superionic conductor.

оксидов (β-глинозем), силикатов (насикон, лисикон, натисит), алюмосиликатов (сподумен, эвкриптит) и др. [1].

Перспективными глинистыми минералами считаются слоистые алюмосиликаты, в частности, монтмориллонит (MM), строение которого характеризуется трёхслойным пакетом (2:1): два слоя кремнекислородных тетраэдров, обращённые вершинами друг к другу, с двух сторон покрывают слой алюмогидроксильных октаэдров. Силикатные слои заряжены отрицательно, а положительные зарядокомпенсирующие ионы могут перемещаться в 2D межслоевом пространстве.

Измерение электропроводности монтмориллонитов как природных (выделенных из бентонитовых глин) [6,7], так и подвергнутых обогащению щелочными ионами по методикам ионного обмена [8-10] показали, что величина удельной проводимости этих твердых электролитов не позволяет отнести их к группе суперионных проводников. Тем не менее, функциональный потенциал этого материала, на наш взгляд, далеко не исчерпан. Дело в том, что ММ весьма «эластичен» с точки зрения изменения его межслоевого расстояния. Существенной раздвижки слоев можно добиться при интеркаляции

полигидроксокомплексов металлов [11]. Наиболее хорошо этот процесс изучен для алюминия, продуктами гидролиза которого являются, в частности, ионы $[A1_{13}O_4(OH)_{24}(H_2O)_{12}]^{7+}$ (так называемые ионы Кеггина). Их внедрение в межслоевое пространство вызывает увеличение базального расстояния d₀₀₁ до 30-40%. Последущий обжиг приводит к образованию кластероподобных образований – Al₂O₃-пилларов, которые создают периодическую столбчатую систему, сшивая силикатные слои и, в то же время, сохраняя их большую раздвижку [12]. Электропроводность такого материала должна иметь преимущественно протонный характер (образующиеся при термическом разложении полигидроксокомплексов протоны насыщают силикатные слои), но не может быть существенно выше электропроводности исходного ММ [13]. Однако, как можно предположить, дополнительное насыщение межслоевых нанополостей пилларированного ММ ионами щелочных металлов по методике [14] может увеличить его электропроводность до уровня суперионных материалов.

Цель начатых нами систематических исследований - синтез материалов с суперионной проводимостью на основе пилларированных алюмосиликатов, обогащенных ионами легких щелочных металлов. В этой статье приводятся результаты первого этапа исследований, связанного с определением электропроводящих свойств Al₂O₂-пилларированного монтмориллонита, допированного ионами натрия. В качестве суперионного материала-прототипа, обладающего наивысшей проводимостью по ионам Na⁺, рассматривается керамика на основе бета-глинозема [15-17], которая позиционируется в настоящее время как наиболее перспективный электролит в метаноловой энергетике [18]. Поскольку бета-глинозем имеет и ряд недостатков [18], дальнейшее совершенствование уже найденных и разработка новых, более доступных для массового производства материалов (в том числе на основе природных глин) является актуальной задачей современного электролитического материаловедения.

2. Синтез материалов

В качестве исходной глины выбран Даш-Салахлинский бентонит, который по содержанию ММ является одним из лучших образцов среди европейских месторождений бентонитов [19]. Его химический состав, масс.%: SiO₂-57.70; TiO₂-1.04; Al₂O₃-13.75; Fe₂O₃-5.36; FeO-0.20; CaO-2.49; MgO-3.13; Na₂O-1.74; K₂O-0.24; P₂O₅-0.16; SO₃-0.65; BaO-0.08; потери при прокаливании-13.46.

Монтмориллонит из природного бентонита выделяли методом седиментации, распуская 20 г глины в 1 л дистиллированной воды. После 24 часовой седиментации верхняя часть жидкости центрифугировалась. В результате получали фракцию, которая состоит из чистого монтмориллонита. Полученная фракция со средним размером частиц 2 мкм, подвергалась сушке при температуре 100°С.

Выделенный монтмориллонит обогащали ионами Na⁺ ионообменом при его обработке 1M раствором NaCl (10 г MM на 1 л раствора) при непрерывном перемеши-

вании на магнитной мешалке с подогревом (80°С) в течение 2 часов. Полученную суспензию отмывали от ионов Cl– дистиллированной водой до отрицательной реакции на AgNO₃, центрифугировали и высушивали при температуре 100°С.

Интеркалированный ММ синтезировали ионным обменом межслоевых катионов на полигидроксокатионы алюминия [A1₁₃O₄(OH)₂₄(H₂O)₁₂]⁷⁺. Интеркалирующий раствор готовили гидролизом 0.2 М раствора AlCl₃·6H₂O 0.2 М раствором NaOH при молярном соотношении [OH⁻]/[Al³⁺] = 2.2 и pH = 4.3–4.5 при комнатной температуре. Далее раствор подвергался старению в течение 24 ч при 50°С, в результате чего происходило образование ионов Кеггина. Процесс интеркаляции в водной суспензии Na⁺-обогащенного MM (1%) проводился при покапельном введении интеркалирующего раствора (3 ммоль Al³⁺/ г MM) и интенсивном перемешивании на магнитной мешалке в течение 2 ч при 80°С. После 12-часовой коагуляции при комнатной температуре суспензию отмывали от ионов Cl-, центрифугировали и подвергали сушке в вакуумном шкафу при температуре 120°С. Пилларированный материал получали обжигом в печи при 300 °С. Его дальнейшее допирование ионами Na+ проводили в 0.1 М растворе NaCl при фиксированном pH = 9.5 в течение 8 часов [14].

3. Экспериментальная часть

Измерение базального расстояния d_{001} исходного, интеркалированного полигидроксокомплексами алюминия и пилларированного ММ выполнено методом малоугловой рентгеновской дифрактометрии на модернизированном дифрактометре ДРОН-3 и составило (нм): 1.26, 1.63 и 1.64, соответственно.

Измерение электропроводности на переменном токе (о"), позволяющее оценить электропроводность на постоянном токе (σ_{dc}), проводилось в интервале температур 25-550°С в диапазоне частот ω от 25 Гц до 1 МГц с помощью измерителя иммитанса МНИПИ Е7-20, подключенного с помощью платиновых проводов к платиновым электродам измерительной ячейки. Температура ячейки контролировалась Pt-Pt/Rh термопарой. Измерения проводились на воздухе в автоматическом режиме с использованием оригинального программного обеспечения. Таблетки в виде дисков диаметром 12 мм и толщиной 1 мм формовались из высокодисперсного порошка на прессе давлением 0.2 ГПа. Поверхность таблеток покрывалась двойным слоем серебряной токопроводящей пасты. Перед измерением таблетки выдерживались в сушильном шкафу в течение 2 часов при 100 °С.

Для проведения сравнительного анализа были проведены измерения для исходного MM, обогащенного ионами Na⁺ (MM-Na⁺), пилларированного MM (PMM) и пилларированного MM, допированного ионами Na⁺ (PMM-Na⁺).

4. Обсуждение результатов

На рис. 1 приведена спектральная зависимость проводимости исследованных образцов. Известно, что про-

Рис.1. Спектры проводимости на переменном токе исходного и модифицированных образцов ММ.

водимость на переменном токе является суммой двух вкладов [10,20,21] - диффузионного $\sigma_{dc}(T)$ и поляризационного $\sigma'(\omega, T)$:

$$\sigma_{ac}(\omega, T) = \sigma_{dc}(T) + \sigma'(\omega, T) \tag{1}$$

Для исходного сухого ММ преобладает поляризационная составляющая, что согласуется с результатами авторов [21]. Только при наиболее высоких температурах интервала измерение на низких частотах позволяет выделить диффузионную (ионную) проводимость $\sigma_{dc}(T)$, которая описывается уравнением Нернста-Эйнштейна [10]

$$\sigma_{dc}(T) = \frac{\sigma_{\theta}}{T} exp\left[\frac{-\Delta E_{\sigma_{dc}}}{kT}\right]$$
(2)

Для ММ-Na⁺ $\sigma_{dc}(T)$ выделяется во всем диапазоне исследованных температур; причем, с увеличением температуры расширяется диапазон частот в котором доминирует ионная проводимость. Наконец, для РММ-Na⁺ очень высокие значения σ_{ac} соответствуют диффузионной проводимости во всем интервале температур и

Рис.2. Температурные зависимости проводимости исходного и модифицированных образцов ММ в представлении Нернста-Эйнштейна.

1-MM 2-PMM 3-PMM (573 K) 100 4-PMM (773 K) Относительная интенсивность 1 80 2 60 3 40 4 20 0 6 8 10 2Θ

Рис.3. Малоугловые дифрактограммы исходного и модифи-цированных образцов MM (для PMM в скобках указана температура обжига).

частот. Этот результат коррелирует с видом температурных зависимостей проводимости $\sigma_{ac}(100 \text{ Гц}, T) = f(1/T)$ (рис. 2).

Наблюдаемые изменения при повышении температуры в случае ММ, ММ-Na⁺ и РММ: начальный экспоненциальный рост, сменяющийся падением, прохождение через минимум, и экспоненциальный рост при высоких температурах - свидетельствуют о переходе из области протонной проводимости в область ионной проводимости [18]. В случае же РММ-Na⁺ на температурной зависимости наблюдаются два прямолинейных участка. Точка перегиба соответствует температуре около 350°С. Выше этой температуры электропроводность меняется незначительно. Это, по-видимому, связано с началом термического дегидроксилирования и последующего разрушения пилларов в межслоевом пространстве. При температурах около 500°С происходит коллапс пилларной структуры. Это следует из результатов малоуглового рентгеновского рассеяния (рис. 3): малоугловой базальный рефлекс практически полностью исчезает в случае РММ, обожженного при 500°С.

Наиболее важные результаты вытекают из сравнения электропроводности бета-алюминатной керамики и РММ-Na+. Исходя из вида зависимостей на рис.1 и 2 для РММ-Na+, как и в случае бета-алюминатов [18], можно сделать вывод о том, что проводимость по ионам натрия существенно превышает их протонную проводимость. В обзорных статьях [15,18] обобщенный мировой уровень для поли- и монокристаллических образцов β -Al₂O₃ и β "-Al₂O₃ дает диапазоны удельной проводимости при 25°C 0.0015 – 0.03 См см⁻¹ и энергии активации 0.12 – 0.33 эВ (< 375°C). Для РММ-Na+ величина σ_{dc} = 0.025 См см⁻¹ оказалась близкой, соответственно, к верхнему пределу, а энергия активации ΔE = 0.120 ± 0.002 эВ – к нижнему пределу указанных диапазонов.

Заключение

Предложена методика синтеза материалов с суперионной проводимостью по легким ионам щелочных металлов на основе слоисто-столбчатых алюмосиликатов. Измерена электропроводность Al₂O₃-пилларного монтмориллонита, допированного ионами натрия, которая существенно выше, чем у исходного монтмориллонита и его обогащенной ионами Na⁺ формы, и достигает рекордных значений, обнаруженных ранее для поли- и монокристаллических образцов β-Al₂O₃ и β"-Al₂O₃. Область температур для эксплуатации суперионных свойств полученного материала, по-видимому, ограничена термической устойчивостью пилларной структуры. Поскольку текстурные свойства РММ (удельная площадь поверхности, суммарный объем и размер мезопор) могут быть изменены с использованием методов активированной интеркаляции полигидроксокомплексов разной природы, то дальнейшая работа с данным материалом с точки зрения улучшения его электролитических свойств является перспективной.

Работа поддержана грантом РФФИ 13-03-00673.

Литература

- К.І. Ivanov-Shits, I.V.Murin. Solid State Ionics. St. Petersburg: SPGU publishing (2010) 1000 p. (in Russian) [К.И. Иванов-Шиц, И.В. Мурин. Ионика твердого тела. Санкт-Петербург: издательство СПбГУ (2010) 1000 с.]
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui. Nature Materials. 10, 682–686 (2011)
- N.F. Uvarov, A.S. Ulikhin, A.A. Iskakova, N.N. Medvedev, A.V. Anikeenko. Electrochemistry, 47(4), 429-435

(2011) (in Russian) [Н. Ф. Уваров, А. С. Улихин, А. А. Искакова, Н. Н. Медведев, А. В. Аникеенко. Электрохимия, 47(4), 429-435 (2011)]

- 4. J. B. Goodenough, Y. Kim, Chem. Mater. 22, 587-603 (2010)
- S. Ohta, T. Kobayashi, T. Asaoka. J. Power Sources, 196 3342-3345 (2011)
- T. Kawada, H. Yokokawa, M. Dokiya. Solid State Ionics. 28-30, 210-213 (1988)
- 7. А.А. Guseinov, А.R. Usupov. In: Proceedings of Int. Conf. on phase transitions and critical phenomena in condensed phase. Makhachkala (2005) 378 p. (in Russian) [А.А. Гусейнов, А.Р. Юсупов. Труды Межд. конф. «Фазовые переходы и критические нелинейные явления в конденсированных средах». Махачкала (2005) 378 с.]
- 8. Y. Fan, H. Wu. Solid State Ionics. 93, 347-354 (1997)
- 9. R.C.T. Slade, J. Barker, P.A. Hirst, T.K. Halstead, P.A. Reid, Solid State Ionics. 24, 289-295 (1987)
- A. Haouzi, M. Kharroubi, H. Belarbi, S. Devautour-Vinot, F. Henn, J.C. Giuntini. Appl. Clay Sci. 27 67–74 (2004)
- F. Bergaya. In: Handbook of Clay Science. Elsevier (2006) Vol. 1, pp. 393 - 421.
- M.F. Butman, N.L. Ovchinnikov, V.V. Arbuznikov, A.V. Agafonov, Izvestiya Vuzov. Khimiya i Khimicheskaya Tekhnologiya 55(8), 73-77 (2012) (in Russian) [М.Ф. Бутман, Н.Л. Овчинников, В.В. Арбузников, А.В. Агафонов. Известия вузов. Химия и химическая. 55(8), 73-77 (2012)]
- E. Ruiz-Hitzky, J.C. Galvan, J. Merino, B. Casal, P. Aranda, A. Jimenez-Morales. Solid State Ionics, 85, 313-317 (1996)
- 14. H.Y.Zhu, Q. Ma, G.Q. Lu. J. Porous Mater. 6, 135-142 (1999)
- 15. X. Lu, G. Xia, J. P. Lemmon, Zh. Yang. J. Power Sources 195 2431–2442 (2010)
- I.Yu. Prohhorov, G.Ya. Akimov. Ogneupory i tekhnicheskaya keramika, 1 19 (2008) (in Russian) [И.Ю. Прохоров, Г.Я. Акимов. Огнеупоры и техническая керамика, 1 19 (2008)]
- I.Yu. Prohhorov, O.I. Prohhorov, G.Ya. Akimov. Ogneupory i tekhnicheskaya keramika 10, 11 (2010) (in Russian) [И.Ю. Прохоров, О.И. Прохоров, Г.Я. Акимов, Огнеупоры и техническая керамика, 10, 11 (2010)]
- I.Yu. Prokhorov, G.Ya. Akimov, O.I. Radionova, Science and Innovation (ISSN 1815-2066). 7(6), 17-32 (2011) (In Russian) [И.Ю. Прохоров, Г.Я. Акимов, О.И. Радионова. Наука та інновації. 7(6), 17-32 (2011)]
- 19. V.V. Nasedkin. Dash Salakhly bentonite deposit. M: GEOS (2008) 85 p. (in Russian) [В.В. Наседкин. Даш-Салахлинское месторождение бентонита. М.: ГЕОС (2008) 85 с.]
- 20. A.K. Jonscher. J. Mater. Sci. 13, 553-562 (1978)
- H. Belarbi, A. Haouzi, J.C. Giuntini, J.V. Zanchetta, J. Niezette, J. Vanderschueren. Clay Miner. 32, 13-20 (1997)