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We propose a model that describes both direct and inverse Hall-Petch dependences observed in nanocrystalline ceramics as 
well as the low strain rate sensitivity of such ceramics. Within the model, plastic deformation in nanocrystalline ceramics is 
realized via the emission of lattice and grain boundary (GB) dislocations from GB steps and triple junctions of GBs. The model 
assumes that in the beginning of plastic deformation, the applied load linearly scales with plastic strain and that each GB step 
or triple junction can emit a dislocation no more than once. The model predicts that the transition from the direct to the 
inverse Hall-Petch dependence is associated with an increase in the number density of triple junctions as grain size decreases. 
It is demonstrated that the critical grain size for this transition depends on the fraction of triple junctions that can emit 
lattice or GB dislocation at a given stress. In turn, the intensity of GB dislocation emission from triple junctions can depend 
on the structure and energy of GBs and their chemical composition. The model explains the experimental observations 
(D. N. F. Mucho et al.,. Mater. Lett. 186, 298 (2017); C. Yang et al., J. Amer. Cer. Soc. 102, 6904 (2019)) of direct Hall-Petch 
dependences down to very small grain sizes by assuming that the critical grain size for the transition from the direct to the 
inverse Hall-Petch dependence for the materials synthesized in these experiments is smaller than the minimum grain size of 
the fabricated specimens.
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The mechanical properties of ceramics depend dramatically 
on their grain size. In particular, the hardness of ceramics is 
commonly linearly related to the inverse of the square root of 
the grain size, following the Hall-Petch relation [1– 3]. This 
implies that like metals, ceramics tend to strengthen as their 
grain size is reduced. At the same time, in nanocrystalline 
ceramics, several research groups [4 –14] observed an 
inverse Hall-Petch relation below a critical grain size, which 
manifests itself in softening (hardness reduction) with a 
decrease in grain size (see also review [15]). In contrast, 
recently, the authors of refs. [16,17] produced superhard 
nanocrystalline MgAl2O4 and ZnAl2O4 ceramics, which 
demonstrated direct Hall-Petch dependences down to the 
grain size of 7 and 10 nm, respectively. The reason for these 
contradictions is not clear yet, and their explanation requires 
the understanding of the plastic deformation processes in 
nanoceramics.

Several molecular dynamics simulations [10,18,19] 
demonstrated that the transition from the direct to the inverse 
Hall-Petch dependence at a critical grain size can be related 
to the transition from intragrain plasticity to grain boundary 
(GB) sliding combined with grain rotation [10,16] and 
sometimes amorphization of GB regions [10,17]. In addition, 
GB amorphization, GB sliding, grain rotation and shear 

banding in nanocrystalline ceramics under indentation were 
directly observed using transmission electron microscopy 
[10,14].

The inverse Hall-Petch dependence for nanocrystalline 
ceramics has also been treated within several mechanical 
models. For example, Jiang and Weng [20] and Ehre and 
Chaim [6] applied two- or multiphase composite models to 
nanocrystalline ceramics and obtained an inverse Hall-Petch 
dependence below some critical grain size, for the situation 
where the yield strength of the GB phase is chosen to be 
sufficiently small. These models, however, do not explain the 
contradictions in the experimental data on the hardness of 
nanocrystalline MgAl2O4.

Besides, recently [21], we have employed the concept [22] 
of thermally activated GB sliding to explain both strengthening 
and softening of nanocrystalline ceramics. Within model [21], 
the transition from the direct to the inverse Hall-Petch 
behavior is associated to the transition from lattice dislocation 
slip to the thermally activated GB sliding at a critical grain 
size. This model explained the contradictory data [8, 9,16] on 
the direct and inverse Hall-Petch behavior of nanocrystalline 
MgAl2O4. At the same time, this model predicted high values 
of strain rate sensitivity (around several tenths) typical of GB 
sliding in metals. Although the presence of the dependence 
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of hardness of nanocrystalline ceramics on their strain rate 
agrees with recent measurements of the compressive yield 
strength of YSZ (yittria stabilized zirconia) nanopillars [12], it 
contradicts to the experimental results [9] for nanocrystalline 
MgAl2O4, which demonstrate that the hardness of these 
nanocrystalline ceramics is nearly independent on the strain 
rate. Therefore, in the present paper, we suggest a model 
that explains both the contradictive results on grain size 
dependence of hardness of nanocrystalline MgAl2O4 [8, 9,16] 
and a low strain rate sensitivity of these nanocrystalline 
ceramics.

Within our model, consider a polycrystalline ceramic 
solid under a uniaxial compressive stress σ. Following [23], 
assume that at small enough values of plastic strain, plastic 
deformation occurs via dislocation emission from GBs 
and their triple junctions. Assume that GBs emit lattice 
(perfect or partial) dislocations in grain interiors while triple 
junctions can either emit lattice dislocations to grain interiors 
or produce GB dislocations that move along GBs (Fig. 1). We 
further suppose that GBs emit lattice dislocations from GB 
steps in such a way that each emitted dislocation eliminates a 
GB step, thus reducing the GB energy (Fig. 1). If the resolved 
shear stress in the dislocation slip plane is high enough, 
dislocation emission from a GB step or a triple junction to 
the grain interior can be followed by dislocation propagation 
across the grain and its absorption by the opposite GB. 
Similarly, the emission of a GB dislocation from a triple 
junction to a GB can be followed by the motion of such a GB 
dislocation across the GB to the neighboring triple junction.

Since dislocation emission from an atomic height GB 
step eliminates the step, following [23], we assume that at 
small enough values of strain, any GB step can emit a lattice 
dislocation no more than once. Similarly, we assume that 
dislocation emission from a triple junction significantly 
reduces the stresses acting near the junction, so that in the 
examined case of small strains, each triple junction can emit 
a dislocation no more than once.

We denote the grain size of the ceramic solid as d, the 
magnitude of the lattice and GB dislocation Burgers vectors 
as b and bGB, respectively, the GB length as d / 2 the average 
spacing between GB steps as p (Fig. 1), and the magnitude of 

the compressive strain as ε. Then the plastic strain ε can be 
presented as
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In formula (1) M is the Taylor factor [24], N = d /(2p) is 
the average number of GB steps per GB, ρstep and ρtj

lat is the 
fraction of steps and triple junctions, respectively, which 
have emitted lattice dislocations that passed across a grain, 
ρtj

GB is the fraction of triple junctions that have emitted 
GB dislocations that passed across a GB, and the factors 7 
and 12 designate the number of GBs and triple junctions, 
respectively, per grain in the case where all GBs represent the 
facets of truncated octahedrons. (A truncated octahedron 
contains 14 facets and 36 edges. Each facet (GB) is shared by 
2 adjacent truncated octahedrons, whereas each edge (triple 
junction) is shared by 3 neighboring truncated octahedrons.)

For convenience, we introduce the denotation 
ρtj = ρtj

lat + (bGB  / b)ρtj
GB. Following [23], we assume that at 

sufficiently small values of strain, the parameters ρstep and ρtj 
linearly scale with the applied load σ as

            ρstep = (σ − σ0) / σm1, ρtj = (σ − σ0) / σm2, 	 (2)

where σ0, σm1 and σm2 are parameters that can depend on 
grain size and plastic strain. (At σ = σ0 + σm1 or σ = σ0 + σm2, 
formulae  (2) yield: ρstep =1 or ρtj =1, respectively, which 
means that all GB steps or all triple junctions have emitted 
a dislocation. This implies that the parameters σm1 and σm2 
determine the maximum strengths, σ0 + σm1  and σ0 + σm2, 
of dislocation sources at GB steps and triple junctions, 
respectively.) Formulae  (1) and  (2) can be valid in the 
situation where at small strain, the applied load σ linearly 
scales with plastic strain ε. Such a situation takes place, 
for example, during compression of some nanocrystalline 
metals or composites [25, 26]. Substituting formulae  (2) to 
formula (1), one obtains:
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which yields:
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In the limit of a large enough grain size (d / p >> ρtj / ρstep), 
when dislocation emission from triple junctions (described 
by the second term in formula (1)) can be neglected, 
formula (1) reduces to ε = 7bρstep / 2Mp. The substitution of the 
first formula from (2) to the latter relation yields:
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At small values of ε, formula (5) describes the flow stress 
of a ceramic solid with a large enough grain size. This implies 
that formula (5) should comply with the Hall-Petch relation 
(e. g., [27]) σ = σ0

HP + kεd
−1/2, where σ0

HP and kε are grain size 
independent parameters. This can be achieved if we put 
σ0

HP = σ0, kε = 2Mkm1εp /(7b), where km1= σm1d
1/2 is the parameter 

independent of d. Similarly, we assume that the second 
formula from  (2) can be presented as ρtj = (σ − σ0) d−1/2/ km2, 
where km2 = σm2d

1/2 is the parameter independent of d. 

Fig.  1.  (Color online) A fragment of a nanocrystalline ceramic solid 
(under a uniform compressive stress σ) where plastic deformation 
is realized via dislocation emission from grain boundary steps and 
triple junctions.
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Substituting the relations km1= σm1d
1/2 and km2 = σm2d

1/2 to 
formula (4), we obtain
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Assuming that the yield strength σy corresponds to the case 
ε = ε0, where ε0= 2 ×10−3, formula (6) allows one to calculate 
the yield strength σy = σ|ε = ε0

 of the ceramic solid and its 
microhardness, roughly estimated as: HV ≈ 3σy  [28]. As 
follows from formula (6), at small enough values of the grain 
size d, the second term in the ratio denominator prevails 
over the first term, and HV increases with an increase in d, 
while at sufficiently large grain size, the first term in the ratio 
denominator prevails, and HV decreases as the grain size d 
increases. This means that there exists a critical grain size 
d = dc at which the dependence of HV  on d has a maximum. 
The critical grain size dc can be found from the relation 
(∂HV / ∂d)|d = dc

= 0, formula  (6) and the equalities σy = σ|ε = ε0
 

and HV = 3σy as
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where kHP = kε|ε = ε0
. From Eq. (7), we have: km2 =12bkHP / (Mε0dc). 

Now insertion of the latter equality and the relations 
km1=

 7bkHP / (2Mε0 p) and σy = σ|ε = ε0
 to formula (6) gives:
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At large enough grain sizes, such that d >> dc, formula (8) 
reduces to the classical Hall-Petch dependence σy = σ0 + kHPd

−1/2. 
In contrast, at sufficiently small grain sizes, such that d << dc, 
formula (8) can be written as σy = σ0 + (kHP / dc) d

1/2.
The critical grain size dc depends on the intensities of 

dislocation emission from GB steps and triple junctions, 
which, in turn, can depend on the structure of GBs and the 
specimen processing history. Indeed, if specimen fabrication 
has been accompanied by GB sliding, the latter can produce 
steps at GB junctions, whose presence can promote GB 
dislocation emission from triple junctions during plastic 
deformation of the nanoceramic solid. This implies that the 
fraction ρtj of triple junctions, emitting dislocations, should 
increase if GB sliding occurred during specimen fabrication. 
Since km2 is inversely proportional to ρtj  (see formula (2) and 
the relation km2 = σm2d

1/2) and dc is inversely proportional 
to km2, dc should be directly proportional to ρtj. This means 
that GB sliding during specimen fabrication should increase 
the critical grain size dc, thereby shifting the region of the 
inverse Hall-Petch behavior to larger grain sizes and reducing 
the maximum achievable hardness (characterized by the 
maximum at the dependence of HV on d).

Using formula  (8), we have calculated the dependences 
of microhardness HV of MgAl2O4 on grain size d. To do so, 
we put σ0 = 4.2  GPa [2, 8, 9,16] and kHP = 0.72  MPa × m1/2 
[2, 8, 9,16]. The dependences of HV on d are presented in 
Fig. 2, for various values of the critical grain size dc. It is seen 
from Fig.  2 that the calculated values of the hardness of the 
nanocrystalline MgAl2O4 spinel agree with experimental data 
[2, 8, 9,16], although the slopes of the sections of the curves that 
correspond to the inverse Hall-Petch dependence are smaller 
than it could be expected from these experimental results.

Thus, within our model, there always exists a transition 
from the direct to the inverse Hall-Petch relation at small 
grain sizes. The critical grain size dc for this transition can 
depend on the structure and energy of GBs and their chemical 
composition. Indeed, recent experiments on nanocrystalline 
YSZ ceramics [11] demonstrated a significant increase in the 
GB energy with a decrease in grain size below the critical grain 
size for the transition from the direct to the inverse Hall-Petch 
dependence for hardness. This situation is similar to that for 
nanocrystalline metallic alloys where high-energy (non-
equilibrium) GBs decrease the yield strength and hardness by 
promoting GB sliding, while reducing GB energies via low-
temperature annealing increases the strength and hardness 
of such solids [29 – 31]. (A similar effect of hardening by 
annealing has been reported for various ultrafine-grained 
metals and alloys (e. g., [31– 33]) and theoretically described 
[33, 34] for pure ultrafine grained Al produced by high-
pressure torsion.) One can, therefore, speculate that in 
nanocrystalline ceramics, the formation of high-energy 
GBs also facilitates the emission of GB dislocations from 
triple junctions or their subsequent slip across GBs, thereby 
increasing the critical grain size dc (in accord with the results 
of our model) and decreasing hardness. If this is so, it is logical 
to assume that, similar to the case of nanocrystalline metals 
and alloys, the inverse Hall-Petch behavior in nanocrystalline 
ceramics can be suppressed through a thermal treatment or 
doping by impurities, which decrease GB energy and hinder 
GB sliding.

To summarize, dislocation emission from triple junctions 
of GBs can explain the transition from the direct to the inverse 
Hall-Petch dependence in nanocrystalline ceramics as well as 
the low strain rate sensitivity of such ceramics documented 
in ref. [9]. The critical grain size for this transition depends 
on the fraction of triple junctions that can emit lattice or GB 
dislocation at a specified stress. In turn, the intensity of GB 
dislocation emission from triple junctions can depend on the 
structure and energy of GBs and their chemical composition. 
The observations [16,17] of direct Hall-Petch dependences 
down to very small grain sizes can be explained by assuming 
that the critical grain size for the transition from the direct 
to the inverse Hall-Petch dependence for the materials 
synthesized in refs. [16,17] is smaller than the minimum 
grain size of the specimens fabricated in these experiments.

Fig.  2.  (Color online) Calculated dependences of the microhardness 
HV of MgAl2O4 on the inverse of the square root of the grain size, d−1/2.
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