Влияние температуры интенсивной пластической деформации на структуру и свойства коррозионностойкой стали

Закирова А.А^{1,†}, Садикова Э.И.^{2,‡}

^{1,†} albinaz@imsp.ru; ^{2,‡} elvir_4ik@mail.ru

¹Институт проблем сверхпластичности металлов РАН, ул. Халтурина 39, 450001 Уфа ² Уфимский государственный авиационный технический университет, ул. К. Маркса 12, 450000 Уфа

The effect of severe plastic deformation temperature on stainless steel structure and properties

A.A. Zakirova¹, E.I. Sadikova²

¹Institute for Metals Superplasticity Problems RAS, Khalturin St. 39, 450001 Ufa ² Ufa State Aviation Technical University, K. Marksa St. 12, 450000 Ufa

В настоящей работе исследовано влияние интенсивной пластической деформации (ИПД) методом кручения под высоким квазигидростатическим давлением (КГД) на структуру и свойства коррозионностойкой стали 12Х18Н10Т. ИПД проводили при комнатной (20°С) и повышенной (400 °С) температурах. Установлена неоднородность деформации, интенсивное измельчение зерен стали (размер кристаллитов <100 нм), формирование смешанной ультрамелкозернистой (УМЗ) структуры, образование мартенсита деформации при обеих температурах КГД. Наиболее сильное измельчение имело место при температуре деформации 400 °С, наиболее высокая микротвердость - при комнатной температуре КГД.

Ключевые слова: интенсивная пластическая деформация, кручение под квазигидростатическим давлением, измельчение структуры, упрочнение, коррозионностойкая сталь

1. Введение

Использование коррозионно-стойких сталей для изготовления деталей конструкций, работающих в напряженных состояниях предъявляет все более высокие требования к их прочностным характеристикам. Традиционное решение проблемы осложнено термической неупрочняемостью малоуглеродистых коррозионностойких сталей. Альтернативный способ улучшения механических свойств этих сплавов – создание сложных высоколегированных специальных систем, что приводит к существенному удорожанию конструкций. В последнее время перспективным направлением повышения прочностных свойств многих сплавов считается создание в них ультрамелкозернистых (УМЗ) состояний, обладающих целым рядом уникальных физико-механических свойств [1]. Таким образом, исследование The effect of severe plastic deformation (SPD) by high pressure torsion (HPT) on the structure and properties of 12-18 corrosion-resistant steel is investigated. The SPD is conducted at room temperature (20°C) and 400°C. Deformation nonuniformity, intensive structure refinement, ultra fine grain (UFG) structure and the strain-induced martensite formation are observed after SPD at both HPT temperatures. The most intensive steel structure refinement was obtained at the deformation temperature of 400°C, and the largest microhardness at the room temperature deformation.

Keywords: severe plastic deformation, high pressure torsion (HPT), structure refinement, strengthening, corrosion-resistant steel

материалов с УМЗ структурой и разработка способов их получения являются актуальным направлением физического материаловедения.

Особенный интерес представляют методы интенсивной пластической деформации (ИПД), при использовании которых возможно получение объемных УМЗ материалов.[2, 3]. Ранее достаточно подробно были изучены условия формирования УМЗ структур в коррозионностойких сталях такими методами ИПД как всесторонняя изотермическая ковка (ВИК), криогенная и теплая прокатка, равноканальное угловое прессование [4-7]. Кручение под высоким квазигидростатическим давлением (КГД) – метод ИПД отличающийся тем, что позволяет получать предельные состояния в сплавах благодаря огромным степеням деформации.[1-3] Цель настоящей работы - исследование влияния температуры ИПД методом КГД на структуру и свойства коррозионностойкой аустенитной стали 12X18H10T.

2. Материал и методика исследования

В качестве объекта исследования была выбрана промышленная коррозионно-стойкая сталь 12Х18Н10Т стандартного химического состава. В состоянии поставки она имела структуру промышленного горячего проката.

Известно, что уменьшение исходного размера зерна

Рис. 1. Принципиальные схемы обработки стали: (а) - предварительная ДТО, (б) – ИПД методом КГД.

при больших пластических деформациях значительно ускоряет кинетику измельчения зерен[8]. Поэтому для наиболее эффективного измельчения зерен стали при КГД ее подвергли предварительной деформационно-термической обработке (ДТО) методом горячей прокатки (ГП) при 900°С со степенью обжатия ε = 60% с последующей закалкой в воду (рис. 1а).

ИПД стали проводили по схеме КГД [1] с применением матрицы (нижний боек) с канавкой (рис. 16). Количество оборотов n=5, давление Р, приложенное к пуансону (верхний боек) составляло 6 ГПа. Исходные заготовки перед КГД представляли собой - диски диаметром 20 мм и толщиной 2 мм, вырезанные в поперечном сечении горячекатаных прутков. Комнатная температура ($T_{\text{деф}} = 20$ °C) обеспечила наименьшее прохождение процессов возврата в исследуемых материалах ($T_{\text{гом}} = 0,013T_{\text{пл}}$), и, следовательно, наибольшую плотность дислокаций. Повышенная температура ($T_{\text{деф}} = 400$ °C) способствовала прохождению процессов интенсивной фрагментации ($T_{\text{гом}} = 0,27T_{\text{пл}}$) [4].

Объектами для исследования структуры служили макрошлифы и микрошлифы после механической и электрохимической полировки. Тонкие фольги получали путем механического утонения заготовок на абразивной бумаге с последующей их электролитической полировкой в 10 % растворе HClO₄ в бутаноле. Микроструктурные исследования проводили на оптическом микроскопе (OM) «Olympus GS-75» и просвечивающем электронном микроскопе (ПЭМ) «JEM-2000EX» при ускоряющем на-

пряжении 120 кВ. Диаметр селективной диафрагмы при съемке картин микродифракции составлял 0,7 мкм.

Фазовый анализ, определение размеров областей когерентного рассеяния (ОКР) и расчет микродеформации проводили методом рентгеноструктурного анализа (РСА) на дифрактометре «ДРОН – 4-07» на кобальтовом (Со) излучении.

Величину истинной степени деформации е рассчитывали по формуле (1) как сумму истинных деформаций сдвигом *e* и осадкой *e*_{ocadeu} [2]:

$$e = e_c + e_{ocad\kappa u} \tag{1}$$

Истинную деформацию сдвигом e_{cds} , рассчитывали поформуле:

$$e_c = ln(1 + \left(\frac{\phi R}{h}\right)^2)^{\frac{1}{2}},\tag{2}$$

где ϕ – угол скручивания (рад),

h – исходная толщина образца (мм),

R – расстояние от оси вращения (мм).

Истинную деформацию осадкой определяли как:

$$e_{oca\partial\kappa u} = \ln\left(\frac{h_0}{h_k}\right)^{-1}$$
(3)

где $h_{_{\! 0}}$ и $h_{_{\! \kappa}}$ – толщина образца (мм) до и после деформации.

Как видно из формулы (2), степень сдвиговой деформации зависит от R - расстояния от центра диска, что указывает на ее неоднородность по сечению образца. Поэтому структурные исследования производили в трех зонах полученных после КГД дисков: центр, середина радиуса, периферия.

Микротвердость также изучали вдоль максимального сечения образцов - вдоль их диаметров. При этом использовали микротвердомер «ПМТ-3».

3. Результаты исследования и их обсуждение

В исходном состоянии сталь имела крупнозернистую (КЗ) структуру (с размером зерен d~50 мкм) (рис. 2а), предварительная ДТО (рис. 1 а) привела к формированию мелкокристаллической (МК) структуры с размером зерен d~10 мкм (рис. 26).

На рис.3 представлены макрошлифы поверхностей образцов после КГД.

При комнатной температуре ИПД (рис. 3а) макроструктура образцов практически однородная, а после кручения при 400 °С (рис. 36) макроструктура характеризуется неоднородностью, выявленной после травления. Видны радиальные линии локализации пластической деформации по периферии образца, тогда как в

Рис. 2. Микроструктура стали 12Х18Н10Т: (а) - в состоянии поставки, (б) - после предварительной ДТО.

центре образца наблюдается однородная макроструктура. Отмечено, что центральные зоны образцов (рис. За, б), имеют более светлую окраску, чем зоны периферии и середины радиуса образцов после обеих температур деформации, что указывает на более слабое травление этой зоны из-за меньшей плотности дефектов вследствие меньшей *е*.

Последующие наблюдения методом оптической микроскопии (ОМ) подтвердили неоднородность деформации (рис. 4).

а) б) Рис. 3. Макроструктура стали 12Х18Н10Т после КГД: (а) Тдеф= 20 °С, (б) Тдеф= 400 °С.

Рис. 4. Микроструктура образцов (ОМ) стали 12Х18Н10Т после КГД: (а) – (в) Тдеф.=20°С, (г) – (е) Тдеф.=400°С.

Рис. 5. Микроструктура (ПЭМ) стали 12Х18Н10Т после КГД (е≈5,06): (а) - Тдеф.=20°С; (б) при Тдеф.=400°С

Качественная оценка микроструктуры стали после КГД при комнатной температуре показала, что в центре образца не происходит значительного измельчения зерен (рис. 4а), в области середины радиуса (рис. 46) появляются радиальные полосы локализации деформации и наблюдается интенсивное измельчение зерен, на периферии формируются сильно выраженные полосы деТаблица 1 Результаты количественного анализа УМЗ микроструктуры (ПЭМ)

Темпе- ратура КГД	Размеры СЭ по зонам образ- цов и средние значения (нм)				
	центр образца	середина радиуса	периферия образца	d _{cp}	
20 °C	101 ± 1	85 ± 1	75 ± 1	87 ± 1	
400 °C	89 ± 1	81 ± 2	70 ± 1	80 ± 1	

формации, совпадающие с направлением кручения (рис. 4в), измельчение зерен усиливается.

С повышением температуры КГД (Т_{деф.}=400°С) также не происходит заметного измельчения зерен в центре образца (рис. 4г). Тогда как с удалением от центра формируется УМЗ структура со слабой металлографической текстурой и интенсивным измельчением зерен несколько усиливающимися к периферии образца (рис 4д, е). Микроструктуры стали после КГД, полученные при оптической микроскопии количественному анализу не поддаются.

Несмотря на выявленную методом оптической микроскопии сильную неоднородность деформации по

Рис. 6. Дифрактограммы стали 12Х18Н10Т: (а) - исходное состояние, (б) - после КГД при Тдеф.=20°С, (в) - после КГД при Тдеф.=400°С.

диаметру дисков, микроструктуры, наблюдаемые в ПЭМ идентичны в разных зонах образцов при обеих температурах деформирования. Во всем объеме образцов стали сформировалась смешанная преимущественно фрагментированная УМЗ структура (рис. 5а ,6).

Идентичные кольцевые электронограммы, косвенно указывающие на измельченную структуру с множеством разориентированных друг относительно друга кристаллитов, различаются более размытыми рефлексами для образцов после КГД при $T_{\text{деф.}}$ =20°С. Это свидетельствует об очень высоком уровне внутренних микронапряжений в данном случае. Кроме того, при 20°С в отдельно взятых структурных элементах (СЭ) плотность дислокаций особенно высокая, особенно в приграничных облас-

тях структурных составляющих, из-за чего границы СЭ широкие и размытые (рис. 5а).

При Т_{деф.}=400°С внутренние области большинства СЭ имеют сравнительно низкую а приграничные - более высокую плотность дислокаций (рис. 56). Сами СЭ имеют более узкие границы, чем в случае комнатной температуры КГД.

Количественный анализ микроструктур, наблюдаемых методом ПЭМ показал слабо выраженную неоднородность УМЗ структуры вдоль диаметра образца. Из таблицы 1 видно, что центральные зоны образцов подверглись наименьшему измельчению структуры, наиболее сильное измельчение СЭ отмечено на периферии образцов, а зоны середины радиуса занимают промежуточное положение по средним значениям размеров СЭ. Наиболее интенсивное измельчение СЭ после КГД при температуре деформации 400°С. Эти результаты коррелируют с качественными наблюдениями микроструктуры методом ОМ (рис. 4).

Фазовый РСА показал, что при обеих температурах КГД произошло фазовое деформационное мартенситное превращение. Дифрактограммы до ИПД отражают практически однофазное аустенитное γ - состояние с содержанием α '-фазы на уровне чувствительности прибора (рис.6 а). Небольшое присутствие мартенситной фазы α ', вероятно, связано с ее выделением в результате механических воздействий на материал в процессе подготовки шлифа.

После КГД было обнаружено интенсивное формирование α'-фазы в результате деформационного мартенситного превращения (рис. 6а, б). При комнатной температуре деформирования образовалось большее количество (~90% объема) α'-фазы, чем при повышенной температуре (табл. 2).

Таблица 2 Структурные параметры стали (результаты РСА)							
Состояние		Физические параметры					
		Период решетки, Å	Размер ОКР, нм	Микродеформация,<ε ² > ^{1/2}			
Исходное,	γ (100%)	$3,59 \pm 2,37 \cdot 10^{-4}$	241 ± 28	$0,52 \cdot 10^{-3} \pm 3,25 \cdot 10^{-5}$			
После ГП,	γ (100%)	$3,5939 \pm 2 \cdot 10^{-4}$	162 ± 6	$1,22 \cdot 10^{-3} \pm 4 \cdot 10^{-5}$			
КГД 20 °С	γ (10%)	$3,59 \pm 3,08 \cdot 10^{-4}$	103 ± 31	$6,38 \cdot 10^{-3} \pm 5,35 \cdot 10^{-5}$			
	α (90%)	$2,87 \pm 2,25 \cdot 10^{-4}$	36 ± 2	$2,88 \cdot 10^{-3} \pm 1,45 \cdot 10^{-4}$			
КГД 400 °С	γ (95%)	$3,59 \pm 2,80 \cdot 10^{-4}$	64 ± 2	$2,09 \cdot 10^{-3} \pm 8,85 \cdot 10^{-4}$			
	a (5%)	_	_	_			

Рис. 7. Распределение микротвердости по диаметру образцов на стадиях подготовки и после КГД: (а) верхняя поверхность образцов, (б) нижняя поверхность образцов.

В той же таблице отражены изменения размеров ОКР на стадиях подготовки и после ИПД. Показано уменьшение размеров ОКР после ГП на 30%, после КГД при комнатной температуре в 2,5, а при повышенной температуре почти в 6 раз по сравнению с КЗ состоянием. Обратно пропорциональные изменения коснулись величины микродеформации решетки, период кристаллической решетки оставался практически без изменений. Наблюдаемые отличия в параметрах структуры при разных температурах КГД указывают на неодинаковый характер измельчения структуры и накопления дефектов кристаллической решетки. Наиболее интенсивное измельчение ОКР произошло в результате КГД при температуре 400°С, что согласуется с предыдущими микроструктурными исследованиями.

На рис. 7 представлены значения микротвердости вдоль диаметра образцов. Для оценки возможных отличий в свойствах поверхностей, полученных после КГД дисков, измеряли микротвердость по диаметру с обеих сторон образца. Микротвердость на обеих поверхностях образца после КГД при T=20 °С (см. рис.7 а, б). практически одинакова, в то время как у образца после КГД при 400 °С значения микротвердости на верхней поверхности значительно выше, чем на нижней, что вероятно связано с проскальзыванием образца по поверхности бойка.

Несмотря на значительное различие микроструктуры вдоль диаметра образцов (см. рис. 4), микротвердость по диаметру достаточно однородна. Только в образцах при повышенной температуре наблюдается некоторое снижение значений микротвердости в центральной зоне (рис. 7 а, б).

4. Выводы

1. Установлено, что ИПД коррозионностойкой стали 12Х18Н10Т методом КГД приводит к формированию УМЗ структуры. Более интенсивное измельчение структуры характерно для КГД при 400°С, где размер СЭ $\rm d_{co}{\sim}80$ нм, в то время как при $\rm T_{aeb.}{=}20^{\circ}C$ $\rm d_{cp}{\sim}90$ нм.

2. КГД приводит также к локализации деформации в периферийной зоне образцов, особенно при T_{леф.}=400°С,

что выявляется при структурных исследованиях, но практически незаметно при измерениях микротвердости.

3. КГД стали 12Х18Н10Т сопровождается деформационным мартенситным превращением. При комнатной температуре образовалось большее количество (~90% объема) α'-фазы, чем при повышенной температуре (~5% объема).

4. Результатом КГД являются также измельчение областей когерентного рассеяния (ОКР), рост значений микродеформации. Наиболее сильны эти изменения при Т_{леф.}=400°С.

Авторы выражают признательность Р.Г. Зариповой за помощь в обсуждении результатов.

Работа выполнена в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы» по государственному контракту № 02.513.11.3196.

Литература

- Valiev R.Z., Alexandrov I.V., Nanostructured materials, processed by severe plastic deformation. - Moscow: Logos, 2000. - 272 p.
- R.Z. Valiev, Yu. Estrin, Z. Horita, T.C. Langdon, M.J. Zehetbauer, Y.N. Zhu. - JOM 4, 33 (2006).
- 3. M.V. Markushev. Letters on Materials 1, 36 (2011), (in Russian).
- 4. G.A. Salishchev, R. G. Zaripova, A.A. Zakirova Metal Science and Heat Treatment **2**, 27 (2006).
- S.N. Sergeev, I.M. Safarov, A.V. Korznikov. R.M. Galeyev, S.V. Gladkovsky, E.M. Borodin. Letters on Materials 2, 117 (2012), (in Russian).
- 6. S.N. Sergeev, I.M. Safarov, A.V. Korznikov. Letters on Materials 2, 74 (2012), (in Russian).
- 7. A.A. Zakirova, R.G. Zaripova. Journal of Advanced Materials 7, 113 (2009),(in Russian).
- A. Belyakov , K. Tsuzaki , H. Miura , T. Sakai. Acta Materialia 51, 847 (2003).