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The research group from the Rostov State University has been developing the theory of bushes of nonlinear normal modes 
(NNMs) in Hamiltonian systems with discrete symmetry since the late 90s of the last century. Group-theoretical methods 
for studying large-amplitude atomic vibrations in molecular and crystal structures were developed. Each bush represents a 
certain collection of vibrational modes, which do not change in time despite the time evolution of these modes, and the energy 
of the initial excitation remains trapped in the bush. Any bush is characterized by its symmetry group, which is a subgroup 
of the system’s symmetry group. The modes contained in the given bush are determined by symmetry-related methods and 
do not depend on the interatomic interactions in the considered system. The irreducible representations of the point and 
space groups are essentially used in the theory of the bushes of NNMs, and this theory can be considered as a generalization 
of the well-known Wigner classification of the small-amplitude vibrations in molecules and crystals for the case of large-
amplitudes vibrations. Since using of the irreducible representations of the symmetry groups can be an obstacle to an initial 
familiarization with the bush theory, in the present review, we explain the basic concepts of this theory only with the aid of the 
ordinary normal modes, which is well known from the standard textbooks considering the theory of small atomic vibrations 
in mechanical systems. Our description is based on the example of plane nonlinear atomic vibrations of a simple square 
molecule.

Keywords: large-amplitude atomic vibrations, nonlinear normal modes, systems with discrete symmetry, generalization of the Wigner 
classification of small-amplitude atomic vibrations.
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Введение в теорию бушей нелинейных нормальных мод для 
исследования атомных колебаний большой амплитуды в 

системах с дискретной симметрией
Г. М. Чечин†, Д. С. Рябов

НИИ физики, Южный федеральный университет, пр. Стачки, 194, Ростов-на-Дону, 344090, Россия

Исследовательская группа из Ростовского государственного университета разрабатывает теорию бушей нелинейных 
нормальных мод (ННМ) в гамильтоновых системах с дискретной симметрией с конца 90‑х годов прошлого века. 
Разработаны конкретные теоретико-групповые методы исследования атомных колебаний большой амплитуды 
в  молекулярных и  кристаллических структурах. Каждый буш представляет определенную совокупность 
колебательных мод, которая не  изменяется  во  времени, несмотря на  временную эволюцию этих мод, а  энергия 
начального возбуждения остается локализованной в данном буше. Любой буш характеризуется своей собственной 
группой симметрии, которая является подгруппой группы симметрии системы. Моды, содержащиеся в  данном 
буше, определяются с  помощью симметрийных методов, и  их  вид не  зависит от  межатомных взаимодействий 
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в  рассматриваемой системе. В  теории бушей ННМ существенным образом используется аппарат неприводимых 
представлений точечных и пространственных групп, и эту теорию можно рассматривать как обобщение известной 
классификации Вигнера атомных колебаний с малыми амплитудами в молекулах и кристаллах на случай колебаний 
с  большими амплитудами. Поскольку использование неприводимых представлений групп симметрии может 
быть препятствием для  первоначального знакомства с  теорией бушей мод, в  настоящем обзоре мы объясняем 
основные понятия этой теории только с помощью обычных нормальных мод, понятие о которых хорошо известно 
из стандартных учебников по теории малых атомных колебаний в механических системах. Описание теории бушей 
мод проведено на примере исследования плоских нелинейных атомных колебаний простой квадратной молекулы.
Ключевые слова: атомные колебания большой амплитуды, нелинейные нормальные моды, системы с дискретной симметрией, 
обобщение классификации Вигнера атомных колебаний малой амплитуды.

1. Introduction

Group-theoretical methods for studying small atomic 
oscillations of molecules and crystals were applied for the 
first time by Wigner in his pioneering paper [1] published 
in 1930. He showed that normal modes that are introduced 
in the harmonic approximation for systems with discrete 
symmetry can be classified by irreducible representations 
(irreps) of the symmetry group of these systems in 
equilibrium. All modes related to a given irrep possess the 
same frequency, and eigenvectors of the matrix of the force 
constants corresponded to it can be considered as basis 
vectors of this irreducible representation.

The possibility of the above classification is based on the 
linearity of dynamical equations obtained in the harmonic 
approximation. A similar classification of quantum states is 
also possible due to the linearity of the Schrödinger equation 
(Wigner’s theorem).

The theory of bushes of nonlinear normal modes 
(hereafter, bush theory) was developed in the 90s of the last 
century for studying atomic vibrations in the systems with 
discrete symmetry for the case of arbitrary amplitudes. As 
well as the Wigner theory, it essentially uses the apparatus of 
irreducible representations of the symmetry groups, however 
it allows one to take into account interactions between 
vibrational modes of any amplitude and type.

In the framework of this theory, the concept of bushes 
of nonlinear normal modes (NNMs) was introduced. They 
represent some exact dynamical objects in the arbitrary 
nonlinear systems with discrete symmetry. These dynamical 
systems can be described by ordinary differential equations 
of classical mechanics for any interatomic potentials, and 
also by nonlinear equations of rather different physical and 
mathematical nature. For example, this is the case of integro-
differential equations that arise in the Hartree-Fock method 
and in the density functional theory in the framework of the 
quantum mechanical approach.

All these problems are discussed in the present review. 
Let us begin with some historical remarks concerning the 
works of various authors, which in some sense relate to the 
bush theory.

1.1. Interactions of normal modes in the case of 
weak anharmonism

Since the harmonic approximation can be used only for 
studying atomic vibrations with very small amplitudes, various 

authors developed many different approaches for taking into 
account some anharmonic terms in the system’s potential 
energy for the case of weak nonlinearity. These are different 
versions of the perturbation theory, as well as the continuation 
of the solution of linear approximation with respect to small 
nonlinearity parameters.

Firstly, let us refer to the works of Lyapunov [2], who 
proved the theorem that each normal mode  ϕ can be 
continued with respect to a nonlinear parameter μ in such a 
way that a new periodic mode with the frequency ω(μ) close 
to that of the mode ϕ is obtained. This theorem was proven 
under certain conditions, which we do not specify here, 
while the coefficient before all terms of the Taylor series of 
the potential energy above harmonic approximation can 
be used as parameter  μ. The number of these Lyapunov’s 
nonlinear normal modes, as well as the number of 
conventional normal modes, is equal to the dimension of the 
considered dynamical system. They are constructed with the 
aid of a cumbersome procedure in the form of a power series 
with respect to the nonlinear parameter  μ. However, this 
procedure can usually be carried out only up to sufficiently 
small values of the parameter  μ, which is the reason that 
Lyapunov’s modes are not widely used in solving physical 
problems.

Continuation of the solutions of nonlinear differential 
equations in the form of normal modes with respect to 
some nonlinear parameters has been used in many works by 
different authors [3]. For example, let us refer to the Lindstedt-
Poincare method, where the classification of the terms of 
differential equations into resonant and non-resonant type is 
used. The former lead to a shift of the oscillation frequency to 
eliminate secular terms in the solution, while the latter play 
only the role of small perturbations. We would like to note that 
this method was used in the paper [4] by Flach, Ivanchenko 
and Kanakov to introduce the concept of q-breathers, which 
describe energy localization in the crystal reciprocal lattice.

Various methods of perturbation theory are also widely 
used in the case of weak nonlinearity of the considered 
system. In this regard, it is worth to mention the interactions 
of different types of quasiparticles in crystal physics, in 
particular, interactions between phonons, which are obtained 
as a result of quantization of normal vibrational modes [5].

1.2. Nonlinear normal modes in Hamilton systems

In the framework of advanced mathematics, nonlinear 
normal modes as certain time-periodic dynamical objects were 
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considered in [6]. These works address to mathematicians 
dealing with non-linear systems of classical dynamics and, 
as a consequence, they exploit modern and quite complex 
mathematical techniques such as symplectic geometry, 
topology, singularity theory, etc.

Here, we would like to comment on the difference of these 
works from our approach based on the concept of bushes of 
nonlinear normal modes (a more detailed comparison has 
been presented in [7]).

First of all, it should be emphasized that our theory is 
applicable not only for the Hamiltonian systems only, but for 
a much wider class of nonlinear equations, including Onsager 
type equations used in the thermodynamical description 
of physical systems, and even nonlinear integro-differential 
equations arising at solving the multielectron Schrödinger 
equation in the framework of the density functional theory.

Secondly, bush theory can describe not only periodic 
regimes, but also quasiperiodic ones up to those with 
dynamical chaos.

Thirdly, the basic ideas of the bush theory are rather 
simple for understanding not only by theorists, but also by 
experimenters, and we hope to demonstrate this in the main 
text of the present review.

1.3. Rosenberg nonIinear normal modes

There are several different interpretations of the term 
“nonlinear normal mode” (NNM). Mentioning these 
dynamical objects in the present paper, we will always bear 
in mind the nonlinear normal modes by Rosenberg, which 
were introduced in [8, 9].

The main property of the Rosenberg mode in the 
N-particle mass point mechanical system is that the evolution 
of all its degrees of freedom is described by the same time 
function. As a consequence, the ratio of the displacements 
of all particles to the displacement of any selected particle 
at any moment is a constant value. Conventional (linear) 
normal modes also satisfy this definition, and in this sense, 
Rosenberg modes are their generalization.

A detailed description of the properties of Rosenberg 
modes can be found in [10,11]. Rosenberg modes are widely 
used in studying different mechanical systems [12,13].

The value of the Rosenberg NNMs in comparison with 
linear normal modes is due to the fact that these modes can 
describe vibrations with large amplitudes. However, Rosenberg 
modes are rarely used in solving physical problems, because 
they can exist only under very severe restrictions on the 
interparticle interactions. Several classes of such interactions 
were found, the most relevant of which is the case when 
potential energy of the system is a homogeneous function of 
some order of all its variables. For physical problems, this is 
a very rare case.

However, it was shown  [14] in the framework of bush 
theory that there are certain group-theoretical reasons for 
the existence of a certain number of Rosenberg modes in 
dynamical systems with discrete symmetry even in the case 
of arbitrary interatomic interactions. Rosenberg modes turn 
out to be one-dimensional bushes and they can be found 
with the same group-theoretical methods, as well as bushes 
of higher dimensions. Let us note that Rosenberg modes 

describe periodic regimes, while multidimensional bushes 
describe quasiperiodic motions.

Existence of Rosenberg modes in systems with discrete 
symmetry is determined by the symmetry-related causes, 
and we called them “symmetry determined” Rosenberg 
modes. Below we consider only such modes without this 
specification.

We would like to comment on the paper [15] by Mishra 
and Singh in connection with the concept of Rosenberg 
modes, on the one hand, and with the apparatus of irreducible 
representations of symmetry groups on the other hand. The 
authors of this paper consider oscillations in the mechanical 
system of weights connected by massless nonlinear springs, 
which is characterized by symmetry group C4ν.

In order to find Rosenberg modes, they pass into 
the modal space associated with the basis vectors of all 
irreducible representations (irreps) of the system’s symmetry 
group, as it is done in the Wigner theory of oscillations 
with small amplitudes, and then consider the potential 
energy in the form of homogeneous function of variables, 
corresponding to individual irreps separately from each 
other. This approach should be recognized as erroneous 
since the authors take into account in the decomposition of 
potential energy only invariants constructed from variables 
transforming according to individual irreps completely 
ignoring all mixed invariants constructed from variables 
belonging to the different irreps. However, mixed invariants 
usually play a very significant role (see below a discussion 
of the complete condensate of order parameters upon phase 
transitions in crystals).

On the other hand, taking into account all possible 
mixed invariants leads to the dynamical aspects of the 
bush theory. However, in the present review, we discuss 
only the geometrical aspects of this theory, which can be 
explained in an understandable language and in an almost  
elementary way.

1.4. The theory of the complete condensate of the 
primary and secondary order parameters upon 
structural phase transitions in crystals

The apparatus of irreducible representations (irreps) of the 
space groups is an important component of the Landau theory 
of the second-order phase transitions in crystals [16]. In this 
theory, thermodynamic potential is decomposed into series 
of polynomial invariants constructed from variables that are 
transformed according to all irreducible representations of 
the space group of the highly symmetric crystal phase (in 
the bush theory, we call it by the term “parent group”). The 
coefficients of this decomposition depend usually on two 
thermodynamic variables, temperature T and pressure p, 
whose change can cause a structural phase transition with 
decreasing of crystal symmetry from the parent group G0 to 
some of its subgroup Gj. At the point of the phase transition, 
the coefficient c(p, T) in front of the quadratic invariant of 
some irrep Гi of the parent group vanishes. This so-called 
“critical” irrep is responsible for the occurrence of the phase 
transition, and the set of its variables (in the general case, it 
is multidimensional) forms the order parameter (OP) of the 
considered phase transition.
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The appearance (“condensation”) of this primary 
order parameter, leads to the condensation of a number of 
“secondary” parameters corresponding to some other irreps, 
due to nonlinear interactions in the crystal. These secondary 
order parameters are induced by mixed invariants containing 
variables of different irreps. Near the point of phase 
transition in the p-T plane, secondary order parameters are 
smaller in magnitude than the primary one, however as we 
move away from this point the role of secondary parameters 
increases and they can be equal in order of magnitude 
with the primary parameters (in the general case, all order 
parameters are vector quantities!).

In our works [17,18], group-theoretical algorithms were 
developed for constructing the “complete condensate” of 
all primary and secondary order parameters upon phase 
transitions in crystals with any space parent group. These 
algorithms formed the basis for development of computer 
software for studying structural phase transitions in 
crystals [19].

The bush theory represents a generalization of the static 
theory of the complete condensate of order parameters to the 
case of atomic dynamics in systems with discrete symmetries 
[7,14, 20].

At the same time, when we worked on the theory of the 
complete condensate of order parameters, group-theoretical 
methods for studying structural phase transitions in crystals 
were also intensively developed at Brigham Young University 
(USA, Utah) by Hatch and Stokes. They developed the 
powerful software “Isotropy” [21], which allows one to make 
many group-theoretical calculations using computer.

Several group-theoretical works such as listing all 
possible phase transitions in structures with layer groups 
were performed by our and American groups almost 
simultaneously, which allowed us to establish a good 
cooperation and to carry out several joint works [22 – 24]. 
The most ambitious was the work [23], in which all possible 
symmetry-determined Rosenberg nonlinear normal modes 
were found for all possible mechanical structures described 
by all 230 space symmetry groups. This work was based on 
the idea of “irreducible bushes of vibrational modes”.

1.5. Fermi-Pasta-Ulam chains

In the scientific literature, there is a large body of works 
devoted to studying interactions between vibrational modes 
in the Fermi-Pasta-Ulam (FPU) chains.

These chains were introduced on the initiative of 
E.  Fermi in the classical work [25] to study the possibility 
of thermalization of the system due to the weak nonlinear 
interactions between conventional normal modes. It was 
expected that, at sufficiently large times, the system will 
transfer to the state of the energy equipartition between all 
degrees of freedom, which are these normal modes.

To the authors’ surprise, the energy from the initially 
excited mode with the longest wavelength has been passed 
to a very small number of the modes following the first one, 
but was not transmitted to any distant shortwave modes. 
Moreover, computational experiments allowed Fermi, Pasta 
and Ulam to reveal the so-called “return phenomenon”, 
which consists in the fact that over time the energy from 

other modes that appeared earlier is again transferred 
almost completely to the first mode, and the whole process 
is repeated in a quasiperiodic manner without any trend to 
the energy equipartition between all vibrational modes. If we 
translate this phenomenon into the range of sounds heard by 
a human ear, then the FPU chains generated a very definite 
melody instead of the expected cacophony of sounds.

The nature of this phenomenon was clarified by Zabusky 
and Kruskal [26], who made the transition from the ODE 
system, describing the vibrations of the FPU chain, to the 
partial differential equation, which turned out to be the 
Korteveg  — de Vries (KdV) equation, and introduced the 
concept of solitons. The return phenomenon in the FPU-
chains was explained in some a sense in this way.

FPU chains turned out to be very convenient objects for 
studying various types of nonlinear dynamical objects. Until 
now, more and more new studies of these seemingly simple 
systems appear in the world scientific literature [27, 28].

Poggi and Ruffo in [29] revealed the possibility to excite 
in the FPU-β chain some sets of normal modes, which can 
exist without transferring the excitation to other modes. 
These sets are examples of bushes of vibrational modes in this 
one-dimensional system. However, the results of  Ref.  [29] 
were obtained by analyzing the specific type of interactions 
in FPU-β chain without application of any symmetry-
related methods. Such approach is rather cumbersome even 
for the one-dimensional FPU chain and does not allow 
generalization to the case of dynamical systems of a more 
complex structure.

Similar work on the dynamics of FPU chains were carried 
out later by Shinohara [30].

In Refs. [31] and [32], we presented a detailed comparison  
of the results of the above mentioned papers with those of 
the bush theory and demonstrated how much easier and 
more efficient can be group-theoretical methods for studying 
intermode interactions even in the case of one-dimensional 
chains, not to mention two-dimensional and three-
dimensional periodic structures.

1.6. Invariant manifolds and bushes of NNMs

Another approach was developed by Manevich  [33], Rink 
and Verhulst [34 – 36], who used idea of finding symmetry-
determined invariant manifolds for dynamical systems with 
discrete symmetry. The bush theory also begins with the 
idea of finding such invariant manifolds, but it goes much  
further.

Indeed, in the above cited papers there is no one 
essential element of the bush theory  — decomposition of 
the invariant manifolds into nonlinear normal modes with 
the aid of the apparatus of irreducible representations of 
the symmetry groups. On the other hand, it is this element 
allows one to introduce the concept of the bush of modes 
as a certain fundamental dynamical object that has its own 
internal dynamics, since the collection of modes of a given 
bush preserves over time, while their amplitudes undergo 
temporary evolution.

The bush theory does not cease to exist when the stability 
of a given bush is lost because in this case it transforms into 
another bush of a larger dimension.
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Finally, it is the using of irreducible representations 
of the symmetry groups that allows one to search for 
bushes of modes in systems with discrete symmetry of any  
complexity.

1.7. Bushes of vibrational modes and discrete 
breathers

Another turn in the history of the bush theory was associated 
with the theory of discrete breathers. This direction of activity 
is connected with the idea put forward by Dmitriev, who 
suggests to construct a new type of discrete breathers 
in crystals by applying to the vibrational bushes some 
“localizing functions”. A series of joint works of the Ufa and 
Rostov research groups in the field of nonlinear dynamics 
was published using this idea [37, 38].

1.8. Bushes of NNMs and the density functional 
theory

The bush theory is based on the group-theoretical methods 
that are applicable not only to dynamical systems with discrete 
symmetry described by classical differential equations, but 
also to a wide class of other nonlinear equations. Especially 
significant are the integro-differential equations of the theory 
of the density functional [39], since this theory enables to 
take into account quantum-mechanical variation of the 
electron shells of atoms during classical motion of their 
nuclei (see Sec. 7 of this review). We have published several 
papers on this subject [40 – 43].

2. Invariant manifolds

We begin with studying the classical dynamics of N 
material points whose interactions are described by some 
phenomenological potentials (model  1). This is a standard 
but quite rough approximation for modeling dynamics of 
atomic systems.

In the study of dynamical systems, the concept of invariant 
manifolds (IMs) plays an important role. Let us explain this 
concept.

The dynamics of a system of N material points is described 
by a trajectory in the 6N-dimensional phase space of all their 
coordinates and momenta (velocities). By the definition, 
if the system’s initial state, determined by the coordinates 
and velocities of all its particles, lies on a given IM, then 
the entire phase trajectory will lie on this manifold, i. e. the 
system does not leave this manifold at any time during its 
evolution. Obviously, any exact solution of the dynamical 
equations must lie on a certain IM, and this fact determines 
the importance of finding such manifolds.

Unfortunately, in mathematics, there are no general 
methods for searching invariant manifolds for arbitrary 
dynamical systems. On the other hand, if the system 
has some discrete symmetry, then one can propose 
general methods for constructing such manifolds. 
The key idea is that invariant manifolds correspond 
to the subgroups of the system’s symmetry group. The 
theory of bushes of nonlinear normal modes starts with  
this idea [7,14, 20].

In Fig. 1, we show a planar square molecule consisting of 
four atoms located at the corners of the square. We consider 
this molecule in space and, therefore, its point symmetry 
group is C4ν in the Schoenflis notation. This group consists of 
8 elements. They are:

- vertical fourth-order axis, which determines rotations 
by 0, 90, 180 and 270 degrees around the Z axis;

- four reflection planes that pass through this vertical axis. 
Two of them are “coordinate planes” — they pass through the 
axes X and Y, respectively, while the other two reflection planes 
are “diagonal” — they pass through the diagonals of the square.

3. Harmonic approximation and normal modes

The standard approach for studying atomic vibrations 
with small amplitudes in molecules and crystals is the 
harmonic approximation  [44]. In this approximation, the 
potential energy of the nonlinear system is expanded into 
the multidimensional Taylor series over all displacements 
of atoms from their equilibrium positions and all members 
of this series, starting with cubic ones, are discarded. As 
a result, one obtains a quadratic form. Then the classical 
Newton equations, determined by such quadratic potential 
energy, form a system of linear differential equations 
with constant coefficients with respect to the atomic  
displacements (xj).

This system can be split into independent equations if the 
above quadratic form is reduced to the canonical form, in 
which it takes the form of a superposition of only the squares 
of the variables xi

2 (all terms of the type xi xk are eliminated).
This can be achieved by using a linear orthogonal 

transformation of the force constant matrix (the matrix of the 
second partial derivatives of the potential energy with respect 
to all variables) to the diagonal form. As it is well known, 
this problem is reduced to finding all the eigenvalues and 
eigenvectors of the force constant matrix by an appropriate 
orthogonal transformation in the space of old variables.

The new dynamical variables yj(t), in contrast to the old 
variables xi(t), are normal modes of the original dynamical 
system.

Fig.  1.  The model of a simple square molecule.
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These modes are independent of each other in the 
harmonic approximation, and their number is equal to the 
number of the system’s degrees of freedom.

If some weak nonlinear terms in potential energy are 
taken into account, the normal modes begin to interact with 
each other, and their interactions can be calculated in the 
framework of the perturbation theory.

4. Normal modes for the square molecule

Let us consider all normal modes for the case of atomic 
vibrations in the plane of the square molecule presented in 
Fig. 1. This molecule possesses 8 degrees of freedom because 
each atom has two degrees of freedom (displacements along 
the X and Y axes) and, therefore, 8 normal modes. A certain 
pattern of atomic instantaneous displacements, which are 
shown by arrows in Fig. 2, corresponds to each of the normal 
modes.

All these normal modes were obtained for the case when 
atoms interact via the Lennard-Jones potential in “standard 
form” (both phenomenological constants corresponding to 
the contribution from the attraction energy and repulsion 
energy are set equal to unity). The eigenvalues of the 
force constant matrix, i. e. squares of the normal modes 
frequencies are λ1= 32.575, λ2 = λ7 = λ8 = 0, λ3 = 34.541, 
λ4 = −1.965, λ5 = λ6 = 33.986. In  Fig.  2, modes φ7 and φ8 are 
not indicated (they describe the motion of the molecule as a 
whole along the X and Y axes). All the atomic displacement 
patterns were obtained from the eigenvectors of the force  
constant matrix.

Let us note that the form of the atomic patterns is 
completely independent of the interparticle interactions, 
while vibrational frequencies depend substantially on these 
interactions.

We see that the atomic patterns for all normal modes have 
some symmetry, and the corresponding point groups in the 
Schoenflies notation are also shown in Fig. 2. Let us consider 
the form of these patterns in more detail.

First of all, it should be emphasized that the lengths of all 
arrows, showing atomic displacements, are of the same length 
for any chosen mode!

Fig. 2 a shows the instantaneous deformation of molecule 
corresponding to the so-called “breathing mode” φ1: molecule 
retains its square shape, which periodically increases and 
decreases in size. The mode in Fig. 2 b describes the rotation 
of our square molecule as a whole around its center according 
to mode φ2. Fig.  2 c shows the rectangular deformation of 
the molecule during its oscillations according to mode φ3: it 
periodically stretches along one coordinate axis, contracting 
along the second axis, and vice versa.

Fig. 2 d shows the rhombic deformation of the molecule 
during its oscillations in mode φ4  — it either stretches 
along one diagonal, contracting along the second diagonal, 
and vice versa. Finally, the trapezoidal deformation of our 
molecule with a different orientation along the coordinate 
axes is depicted in Figs.  2 e,  g. It corresponds to the  
modes φ5 and φ6.

The above atomic patterns were obtained as eigenvectors 
of the force constant matrix for the case of the Lennard-Jones 
potential. However, it is important to emphasize that the same 

types of patterns can be obtained with the aid of basis vectors 
of all irreducible representations of the molecule’s symmetry 
group without taking into account any specific interatomic 
potentials [1].

It is noteworthy that eigenvalue, corresponding to the 
rhombic normal mode φ4, turns out to be a negative number 
and, therefore, the frequency of “oscillations” of this mode is 
imaginary. This means the instability of the square molecule 
relative to the rhombic deformation, i. e. the molecule does 
not oscillate with respect to the square equilibrium positions 
but leaves them.

Starting the study of normal modes in a square molecule, 
we implicitly assumed that its square configuration is 
stable and small atomic vibrations occur relative to this 
configuration. However, the results of our calculations for 
the case of the Lennard-Jones potential show that the square 
configuration of the molecule is unstable. On the other hand, 
it can be stable in the case of other interatomic interactions, 
or when one more atom is placed in the center of the square 
configuration. Let us note, in this regard, that centered 
plane square molecules do exist in nature (for example, the 
molecule XeF4).

Our group-theoretical analysis does not depend 
on the centering of the square, since we exclude modes 
corresponding to the movement of the molecule along 
coordinate axes, assuming thereby the immobility of the 
molecule center where the additional atom can be placed.

5. Invariant manifolds and bushes of nonlinear 
normal modes for the square molecule

In the framework of classical dynamics, which is described 
by Newton’s differential equations, the dynamical behavior 
of our molecule is uniquely determined by its initial state. 
This is a situation of so-called classical determinism — “the 
past completely determines the future”. In such a situation, 
we can say that there exists a certain “law of conservation of 
symmetry”. This means that if some element of symmetry 
of the system’s motion exists at the initial moment (it is 
determined by the atomic displacement pattern), then this 
element exists during the whole time of movement until it 
is stable.

	 a 		       b 		            c

	 d 		        e 		            f

Fig.  2.  Normal modes for the square molecule.
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Let us consider the atomic displacement pattern 
corresponding to the mode φ4, which represents a rhombus 
with diagonals of the same length since, as already was 
mentioned, all arrows showing displacements of the atoms 
from the corners of the square, possess the same length in the 
framework of the harmonic approximation. The symmetry 
group of this pattern is C2ν

d. However, the considered pattern 
is not one of the most general form, which corresponds to 
the point group C2ν

d! Obviously, the rhombus with diagonals 
of different lengths also has the same symmetry group and it 
corresponds to displacements of different lengths for atoms 
located on different diagonals.

Thus, the invariant manifold corresponding to the point 
group C2ν

d is wider than that which we obtained for small 
oscillations in the harmonic approximation. From this point, 
the introduction to the bushes of vibrational modes starts.

5.1. Bushes of vibrational modes

Displacements of atoms from their equilibrium positions in 
the plane of the molecule can be described by a configuration 
vector of the form:

	          
X = [x1, x2 / x3, x4 / x5, x6 / x7, x8],		  (1)

where the first two coordinates are the x- and y- displacements 
of the first atom, the next two coordinates are x- and y- 
displacements of the second atom, etc. (the atom’s numbers 
are shown in Fig. 1).

In these notations, the eigenvector of the force constant 
matrix, corresponding to the φ4 mode and describing the 
rhombus of its atomic pattern, has the following form:

 X = [a, a / a, −a / −a, −a / −a, a] = a × [1, 1 / 1, −1 / −1, −1 / −1, 1].

On the other hand, the coordinate vector corresponding 
to the rhombic pattern of the general form with the symmetry 
group C2ν

d is

	       X4 = [a, a / b, −b / −a, −a / −b, b].		  (2)

This vector determines the rhombus with diagonals of 
different lengths. If we decompose it over the complete set of 
eigenvectors of the force constant matrix (note that by virtue 
of Wigner’s results [1] we can look at them as basis vectors 
of irreducible representations of the symmetry group C4ν), 
then it is easy to verify that there are only two nonzero terms 
in such decomposition and they correspond to the modes φ4 
and φ1:

          X4 = A × [1, 1 / 1, −1 / −1, −1 / −1, 1] +
               + B × [1, 1 / −1, 1 / −1, −1 / 1, −1],		  (3)
                 A = (a + b) / 2,  B = (a − b) / 2.

If we choose initial conditions for solving nonlinear 
dynamical equations of our molecule in the form of (2) for 
some fixed values of a, b [or A, B in (3)], we find that these 
constants begin to change during the numerical integration 
of these equations, i. e. they are certain functions of time, 
a(t) and b(t). The configuration vector X4(t) will possess the 

form (2) for any instant t, i. e. it does not leave the invariant 
manifold determined by Eqs. (2) or (3):

      X4(t) = A(t) × [1, 1 / 1, −1 / −1, −1 / −1, 1] +
               + B(t) × [1, 1 / −1, 1 / −1, −1 / 1, −1].	 (4)

Thus, we have obtained two-dimensional bush B4 with the 
symmetry group C2ν

d.
On the other hand, for vibrations corresponding to the 

symmetry group C4ν, starting from the normal mode φ1, we 
will obtain the dynamical regime of the form

	   X1(t) = A(t) × [1, 1 / 1, −1 / −1, −1 / −1, 1].	 (5)

This is the one-dimensional bush B1 with C4ν point group.
Using the above examples, we can introduce some notions 

and present some ideas of the theory of bushes of nonlinear 
normal modes.

- We have excited bush B4 with the aid of excitation of 
normal mode φ4. If its amplitude is sufficiently small, we will 
see during integrations of nonlinear equations practically 
only this mode in full accordance with the theory of small 
atomic vibrations. However, as the initial amplitude of φ4(t) 
increases, the additional mode φ1(t) can be observed in the 
numerical solution of nonlinear equations since nonlinear 
terms begin to play a more and more important role. We call 
the primarily excited mode φ4(t) the “root mode” of the bush, 
while the mode φ1(t), involving into the vibration process 
because of its interaction with the root mode, we call the 
“secondary mode”.

- It is important to note that our secondary mode φ1(t) 
possesses a higher symmetry group (C4ν) with respect to the 
group C2ν of the root mode. It can be proved in the framework 
of the bush theory that this is a general property — symmetry 
of all secondary modes always is equal or higher than that of 
the root mode. Note that the above-discussed notions are 
similar to primary and secondary order parameters in the 
theory of phase transitions in crystals [17].

- One should not think that secondary modes always are 
smaller in amplitude than the root mode — they can be of the 
same order of magnitude for the case of large nonlinearity.

- A given bush can be certainly excited by simultaneous 
excitations of all its modes, not only by one root mode.

- One-dimensional bush represents a periodic motion, 
while the m-dimensional bush represents a quasi-periodic 
motion with m main frequencies (and their different integer 
linear combinations) in its Fourier spectrum.

Let us now consider bush B2 generated by the root mode 
φ2(t), that describes the rotation of our square molecule as a 
whole (see its atomic pattern in Fig. 2 a). Being conventional 
normal mode, it is independent of all other modes in the 
harmonic approximation. But if we take into account nonlinear 
terms in the decomposition of the molecule Lennard-Jones 
potential energy, the mode φ2(t) involves into the vibrational 
process one more mode φ1(t) (and only this mode!). This is 
the same secondary mode as that in the above-considered 
bush B4. As a result, the connection between rotation and 
oscillation movements appears, i. e. our molecule rotates and 
simultaneously oscillates. The connection between these two 
types of motion is a well-known property of real molecules.

The complete list of all bushes, which can be excited in the 
square molecule, is presented in the Table 1. Each of them is 
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determined by a certain subgroup of the molecule symmetry 
group C4ν. Therefore, to find all bushes we must consider all 
such subgroups, taking into account their different settings into 
the parent group C4ν. Each subgroup determines the certain 
invariant manifold, which then we must decompose into the 
basis vectors of the irreducible representations of the parent 
group to single out all modes forming the bush. It is obvious 
from the described procedure that bushes found in this way 
fully independent of any specific interatomic interactions and 
these group-theoretical results are exact. This is a geometrical 
aspect of the bush theory.

Each bush in Table 1 is presented as a linear combination 
of certain modes. The second column shows the symbols of 
irreducible representations (irreps) of the symmetry group 
C4ν, which contribute to a given bush. There are five irreps in 
this group  — four one-dimensional representations (Γ1; Γ2; 
Γ3; Γ4) and one two-dimensional representation (Γ5). At this 
stage of the description of the bush theory, this column can 
be ignored — we will return to the discussion of connection 
of bushes with irreducible representations of symmetry  
groups later.

Above, we have briefly described some of the geometrical 
aspects of the bush theory, and now we would like to discuss 
several important issues related to their dynamics.

5.2. Rosenberg nonlinear normal modes in the 
framework of the bush theory

Now we should like to explain, why we use the term “bushes 
of nonlinear normal modes” (NNMs).

In 1962 Rosenberg introduced the concept of the 
“similar nonlinear normal mode” [8]. By definition, this is a 
dynamical regime in N-particle mechanical system for which 
the evolution of all degrees of freedom is described by one 
and the same function of time f(t):

	              X(t) = f(t) × [a1, a2,…, aN],		  (6)

where ai(i =1..N) are constant coefficients determining the 
amplitudes of vibrations of all the degrees of freedom.

Conventional (linear) normal modes also satisfy the 
definition  (6) with f (t) = sin(ωt + φ0). In the general case, 
the function f (t) for the Rosenberg mode is determined by 
a certain differential equation (the so-called “governing” 
equation).

It is very important to note that Rosenberg NNMs 
can exist only in the systems with very specific properties, 

for example in those whose potential energy represents a 
homogeneous function of all its variables (obviously, this is the 
very exotic case).

However, one can prove in the framework of the bush 
theory that in the systems with discrete symmetry there 
can exist Rosenberg NNMs fully independent of the type 
of interatomic interactions. The existence of these modes is 
dictated only by symmetry-related properties.

Comparison of Eq. (5) and Eq. (6) shows that any one-
dimensional bush is a Rosenberg mode. On the other hand, 
we can say that the two-dimensional bush B4, described by 
Eq. (3), contains two different virtual Rosenberg modes — the 
root mode

                A(t) × [1, 1 / 1, −1 / −1, −1 / −1, 1]		  (7)

and the secondary mode

                B(t) × [1, 1 / −1, 1 / −1, −1 / 1, −1].		  (8)

Why do we call these modes of the bush B4 by the term 
virtual Rosenberg modes? The matter of the fact is that the 
mode (7) cannot exist without the mode (8) (the last mode 
automatically involves into the vibrational process by the 
former mode), while the mode (7) can exist as an independent 
Rosenberg mode only in the case when this mode will be 
excited at the initial time without excitation of any other 
vibrational modes.

Since any vibrational regime in a system with the 
symmetry group G0 can be associated with a certain subgroup 
of this group and some bush corresponds to it, we can refer to 
any vibrational regime in the dynamical system with discrete 
symmetry as to the bush of nonlinear normal modes.

5.3. Parent symmetry group

The parent group is the group characterizing the symmetry 
of the considered system. Different physical ideas may be 
used for choosing the parent group. Wigner in his classical 
paper on classification of normal modes in systems with 
discrete symmetry [1] chose as parent group the symmetry 
group of the system’s equilibrium state. However, most often 
for this role the symmetry group of the system’s Hamiltonian 
is chosen. The symmetry group of Hamiltonian can be 
higher than that of the equilibrium state. Indeed, this group 
can dictate the existence of several symmetry-equivalent 
equilibrium states that transform into each other due to the 
action of some of its elements. For example, this is a typical 
situation in perovskite BaTiO3, where around titanium atom 

Number of the bush Irreps which contribute to a given bush Bush Symmetry group G⸦G0

1 Γ1 μ1φ1 C4ν

2 Γ1; Γ2 μ1φ1+ μ2φ2 C4

3 Γ1; Γ3 μ1φ1+ μ3φ3 C2ν
c

4 Γ1; Γ4 μ1φ1+  μ4φ4 C2ν
d

5 Γ1; Γ3; Γ5 μ1φ1+ μ3φ3 + μ5φ5 Cs
c

6 Γ1; Γ4; Γ5 μ1φ1+ μ4φ4 + μ5(φ5 + φ6) Cs
d

7 Γ1; Γ2; Γ3; Γ4 μ1φ1+ μ2φ2 + μ3φ3 + μ4φ4 C2

8 Γ1; Γ2; Γ3; Γ4; Γ5 μ1φ1+ μ2φ2 + μ3φ3 + μ4φ4 + μ5φ5 + μ6φ6 C1

Table  1.  Vibrational bushes for a square molecule.
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at the center of the cubic cell there are several symmetrically 
located local energy minima, each of which has less 
symmetry compared to their complete ensemble. During the 
phase transition of the displacement type, the titanium atom 
passes into one of these minimums, as a result of which the 
symmetry of the system decreases. In the case of the ordering 
type transition, the titanium atom can be found at different 
minima with different probabilities.

If certain subgroups of the initially chosen parent group 
were obtained and then we find that the system has some 
additional symmetry elements, i. e. the parent group is higher, 
then the set of the initially found bushes is changed because 
of combining some old bushes into one larger bush with a 
higher own symmetry, as well as of appearing some new 
bushes. For example, in arbitrary monoatomic chains, there 
can exist only three one-dimensional vibrational bushes, but 
if the potential of interatomic interactions is symmetric with 
respect to each site of the chain, then there can exist already 
five such bushes, depending on the number of atoms in the 
chain [31, 32, 45, 46].

To check, which choice of the parent group is the most 
appropriate for a given system, one can perform its modeling 
using methods of molecular dynamics or density functional 
theory methods. Based on the results of such modeling, it is 
necessary to reveal which secondary modes and with what 
amplitudes are involved into the vibrational process when the 
root mode of the bush is excited.

6. Stability of the bushes of 
nonlinear normal modes

As was already discussed, the phase trajectory of the 
considered system does not leave a given symmetry-
determined invariant manifold during its time evolution. This 
conclusion is based on the classical determinism provided by 
the uniqueness of the solution of Newton equations for the 
given initial conditions. If this solution does not practically 
change by any sufficiently small perturbations, which always 
present in any physical system, one can speak about the case 
of stability by Lyapunov [2]. However, in the case when such 
stability is lost, even infinitely small fluctuations can lead to 
fully unpredicted results.

As we have already seen, the root and secondary modes, 
containing in a given bush, are active modes. All other 
vibrational modes are “sleeping” with respect to this bush 
since they possess zero amplitudes. When the amplitude of 
the root mode increases, its frequency changes (this is the 
main property of nonlinear oscillations!). At some value of 
the root mode amplitude, the so-called “critical” amplitude, 
a parametric resonance can occur between the root mode 
frequency and the frequency of one of the sleeping modes.

As a result, this sleeping mode wakes up, i. e. becomes active. 
Thus, the number of active modes in the system increases, and 
a new bush of a larger dimension and a lower symmetry arises.

7. Bushes of nonlinear normal modes in the 
models based on the density functional theory

Our second model is the model based on the density 
functional theory (DFT). Quantum-mechanical models in 

the framework of this theory are much more adequate to 
reality [39]. Indeed, the typical accuracy of such models in 
atomic coordinates is about 1 % and about 10 % in binding 
energy. They take into account quantum characteristics of 
atoms and additional degrees of freedom corresponding 
to the electrons of atomic shells. The well-known software 
packages for treating DFT-models, such as ABINIT, 
Quantum ESPRESSO, VASP, allow one to consider dynamical 
problems in the Born-Oppenheimer approximation, and to 
take into account the influence of atomic-shell polarization 
on the classical motion of nuclei.

Since the density functional theory is based on the 
Schrödinger multielectron equation, which is a linear 
equation, one can ask what new information above that of 
the Wigner’s classification of atomic vibrations by individual 
irreducible representations of the system’s symmetry group 
can be obtained from the theory of the bushes of nonlinear 
normal modes?

The matter is that despite of the linearity of the exact 
Schrödinger equation, the well-known approximate methods 
for solving this equation, such as Hatree-Fock method and 
Kohn-Sham method of the density functional theory are 
based on the solving of some systems of nonlinear integro-
differential equations.

Therefore, all group-theoretical methods of the bush 
theory can be used for studying large-amplitude atomic 
vibrations in molecular and crystal models in the framework 
of DFT-theory. Such studies were performed in [40 – 43].

8. Some mathematics

The key idea of the bush theory is very simple — we must 
find all symmetry-determined invariant manifolds from 
the condition of the configuration vector invariance 
with respect to each subgroup of the system’s parent 
symmetry group. However, the technical realization 
of this idea is rather complicated, and below we very 
briefly and schematically outline the main points of 
the group-theoretical approach for studying bushes of  
nonlinear modes.

At the end of the 70s of the last century, we developed a set 
of computer programs for the group-theoretical analysis of 
the complete condensate of the primary and secondary order 
parameters corresponding to the structural phase transitions 
in crystals  [19]. Later, this complex was generalized for 
studying bushes of nonlinear normal modes. Below, we 
consider some details of the group-theoretical methods of 
the bush theory.

1.	 Let us begin with the case when we already know a 
certain subgroup Gj of the parent group G0. The invariant 
manifold, corresponding to this subgroup, can be found from 
the condition of configuration vector invariance:

		             ĜjXj = Xj.			   (9)

Here Xj is the invariant vector, while Ĝj is the group of 
operators, isomorphic to the symmetry group Gj, which act 
in multidimensional vector space of all N degrees of freedom 
(note that elements of the group Gj act in ordinary three-
dimensional space).
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On the other hand, the vector Xj can be decomposed into 
basis vectors φi of all irreducible representations (irreps) Γi of 
the parent space group G0:

		            Xj = Σi Cjiφi			   (10)

The invariance condition  (9) corresponds to the whole 
N-dimensional space. The similar invariance conditions for 
all the individual irreps Γi can be obtained from it:

		         (Γi↓Gj)Cji = Cji			  (11)

Here Γi↓Gj is the so-called restriction of the irrep Γi on the 
subgroup Gj, which is the set of matrices of the representation 
Γi corresponding to all elements of the group Gj.

For every ni-dimensional irrep Γi, Eq.  (11) represents a 
certain homogeneous system of ni linear algebraic equations 
whose general solution depends on several arbitrary 
constants (a, b, c, etc.). If this solution is zero, irrep Γi does 
not contribute to the bush with the symmetry group Gj.

The vector Cji being multiplied by the basis vectors of the 
irrep Γi (see about these vectors below) determines a concrete 
form of the vibrational mode φj associated with this irrep, 
i. e. the pattern of atomic displacements corresponding to the 
obtained mode.

According to Eq.  (11), the vector Cji is conserved by all 
matrices of the irrep Γi, which correspond to elements of 
the group Gj. However, some other matrices of this irrep, 
corresponding to elements of the parent group G0, which 
are not contained in its subgroup Gj, can also conserve the 
vector Cji. Therefore, this vector can select some additional 
symmetry elements of the group G0 (except those that are 
already included in the subgroup Gj), i. e. it corresponds to a 
subgroup G~j of a higher order than Gj.

The subgroup G~j of minimal symmetry represents the 
symmetry group of the whole bush Bj and, at the same time, 
the symmetry group of its root mode (we omit here some 
subtleties of the discussed problem).

Eq. (11) is the source of the selection rules for excitation 
transfer from the root mode to the secondary ones.

At this point, it is appropriate to explain the words “the 
mode belonging to a given multidimensional irrep”. Let us 
obtained a certain invariant vector Cji as the general solution 
of Eq. (11) for a six-dimensional irrep Γi, which has the form 
[a, b, −a, c, −b, c] (six-dimensional irreps frequently occur 
in the cubic space groups and a few dozens of different 
invariant vectors with different own symmetry groups Gk can 
be associated with each of these irreps). Then the vibrational 
mode, corresponding to this vector, is

X(t) = a(t)φ1+ b(t)φ2 − a(t)φ3 + c(t)φ4  − b(t)φ5 + c(t)φ6,

where φk (k =1..6) are basis vectors of the representation Γi.
The complete set of the bush modes with symmetry group 

Gj is determined by the collection of all nonzero solutions of 
the Eq. (11).

2.	 In order to construct an explicit form of atomic 
displacement patterns, it is necessary to obtain basis vectors 
of those irreps of the parent group G0, which are contained in 
the decomposition of the reducible mechanical representation 

of this group into irreducible representations. Usually, 
such basis vectors are obtained by the projection operators 
technique. In our paper [19], a more transparent and more 
convenient for our purposes method was presented. This is 
the so-called “direct method” based on the definition of the 
group representation.

If the invariant vector, corresponding to the subgroup Gj, 
and basis vectors of the irrep Γi are already found, then the 
contribution of this representation to the atomic displacement 
pattern can be obtained by the Eq. (10).

3.	 A very difficult problem of the bush theory is finding 
of all subgroups Gj of the parent space group G0, taking into 
account all their possible settings in the group G0. For this 
purpose, we developed a special group-theoretic algorithm 
based on the sequential finding of all possible pair-wise 
intersections of invariant vectors of a given representation 
(each of them represents some set in the space of the given 
irrep). We used this algorithm earlier to construct a complete 
condensate of order parameters in the theory of structural 
phase transitions in crystals [17].

4.	 A separate important and cumbersome problem is 
obtaining the so-called “full” irreducible representations 
of the space groups. For this purpose, we used in our 
computer program the standard algorithm based on the 
method of projective irreducible representations, which is 
well described in  [47]. Let us note that it is very difficult 
to find the full irreps of the space groups using tables 
from the book by Kovalev  [48], due to the deep degree 
of embedding notations of different levels in each other.  
For solving specific problems associated with the 
construction of bushes of modes for structures with space 
symmetry, we use our own tables in the so-called “genesis” 
form (for many space groups, we published them earlier as 
VINITI deposited manuscripts).

9. Conclusion

As was noted in Introduction, Wigner published his 
pioneering work on the application of group-theoretical 
methods for studying and classification of small oscillations 
of systems with discrete symmetry [1] in 1930. This approach 
has become classical and has been included in all textbooks 
on the physics of molecules and crystals. Wigner showed 
that small vibrations within the framework of the harmonic 
approximation can be classified by irreducible representations 
of the symmetry groups of these objects. Indeed, the 
degeneracy degree of a given fundamental frequency is equal 
to the dimension of a certain irreducible representation of the 
symmetry group, while the corresponding normal modes are 
“transformed according to this representation”, i. e. they can 
be considered as basis vectors of this irrep. Wigner’s theorem 
[49] determines the general form of the Hamiltonian matrix 
corresponding to small oscillations of the system with 
discrete symmetry.

We emphasize once again that all these results relate only 
to small atomic oscillations in the framework of the harmonic 
approximation. In contrast, the bush theory presents a group-
theoretical classification and corresponding methods for 
studying dynamical regimes in the systems with discrete 
symmetry for any amplitudes of the atomic vibrations.
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Each bush contains some modes of different irreps of 
the parent group of the considered systems. In Table  1, 
we indicated the numbers of those irreps of the group C4ν 
that contribute to the bushes of the square molecule. The 
apparatus of the irreps of space groups, which is used in the 
bush theory, can be found in [19].

Let us note that the bush theory includes not only a 
geometrical but also a dynamical part, which the authors 
hope to consider later in the second part of this review.

Group-theoretical methods were used by our group 
not only for studying deterministic motion and delocalized 
modes. For example, such methods were used for studying 
dynamical chaos in three-dimensional systems with quadratic 
nonlinearities in [50] and they were applied for searching 
localized states in the form of discrete breathers (outside of 
the above-described approach based on the idea of “localizing 
functions”) in [51]. Many similar problems were addressed in 
reviews [52] and [53].
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