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A model for simulation of the mechanical properties of porous NiTi shape memory alloy samples (SMA) with high through
porosity has been proposed. Such samples are obtained from nickel and titanium powders by self-propagating high-
temperature synthesis under specially selected technological conditions. The structure of the samples corresponds to a set of
ligaments without a clearly defined orientation of the pore channels. In this work, a study of microphotographs of porous NiTi
samples with a porosity of 60% has been carried out. Basing on this study such a porous material has been approximated by a
beam structure consisting of horizontal beams supported by vertical curved beams. A specially developed technique of finding
the geometric parameters of this beam structure was used for its characterization. The object for modeling determined in this
way provides the opportunity to take into account the basic structural features of the sample. The strain of the porous sample
is then calculated with the use of the methods of the strength of materials by calculating the displacements of all structural
elements. The constitutive relations of the SMA microstructural model have been used to describe the SMA deformation. This
model proved to be an efficient tool for simulation of the functional and mechanical behavior of a solid SMA under various
thermal and mechanical loadings. The deformation curves of porous NiTi under compression at different temperatures
corresponding to the martensitic and to the austenitic state of the SMA have been calculated. The results of the simulation
have shown good agreement with the experimental data.
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Mopenp gnsa pacyeTa MEXaHMYECKOTO NOBEAEHNU A IIOPUCTOrO
CI/IaBa C MAMATHIO (POPMBI C HEYHOPAOYEHHOI CTPYKTYPOIi
Anaposa E.H.", Bonkos A.E., EBapg M. E.

Cankrt-IleTepOyprckuii rocylapCcTBEHHBIN YHMBEPCUTET, YHUBEpCUTeTcKas Hab., 7/9, C.-IletepOypr, 199034, Poccusa

ITpennoxxeHa MOJE/b IS pacdeTa MeXaHIIeCKIX CBOJICTB 00Pa3I[OB C BBICOKOI CKBO3HOI ITOPVICTOCTBIO 113 CIIABA C IIAMSITHIO
¢dopmbl (CIIO) NiTi. Takue o6pasLbl MOTyYa0TCA U3 NOPOLIKOB HYUKEIA U TUTaHa METOIOM CaMOPACIIPOCTPAHAIOIErOCs
BBICOKOTEMIIEPATYPHOTO CHHTE3a, IIPOBEJEHHOTO MIPY CIENNaIbHO HOA00PAHHBIX TEXHOMOTMYECKNX YCa0BusAX. CTpyKTypa
00pasIioB npecTaBsieT co00il HAOOP MEXIIOPOBBIX IIEPETOPOJOK Oe3 YeTKO BhIpa)KeHHOI OPMEHTAIMY IOPOBbIX KaHAJIOB.
B manHoit paboTe 6bUTO MpOBeseHO uccienoBanne Mrkpodororpaduit mopuctsix o6pasnos NiTi ¢ mopucrocteio 60%.
Ha ocHOBaHMY 9TOTO NCC/IE[OBAHNS TAKOI OPYUCTBII MaTepHat ObUI AIIIIPOKCUMIPOBAH 6a/I0YHOI CTPYKTYPOIL, COCTOSIIEN
U3 TOPU3OHTA/IBHBIX (GA/IOK, MOfeP>KIBAEMBIX BEPTUKATbHBIMI M30THYTBIMU Oankamu. [l ero XapakTepucTuKy Obuia
JVICIIOZIb30BAHA CIIEIVANbHO pa3paboTaHHAs METOAVIKA OIIPefe/ieHNsI FeOMETPUUYECKNX MapaMeTpPoOB PacCMaTpUBAEMOI
6a04HOI KOHCTPYKIyy. OnpeyeneHHbI TAKMM 00pa3oM 00'beKT [/IsI MOJe/IMPOBAHNS JaeT BO3MOXKHOCTD Y4€CTh OCHOBHBIE
CTpyKTypHBbIe 0ocobenHOCTI 06pasua. Jedopmaryst mopuctoro o6pasia 3aTeM PacCIUTHIBAETCS C MCIIONb30BaHIEM METOLOB
CONIPOTMBJIEHVSI MATEPUAJIOB IIyTeM pacdeTa CMEILIEHNIT BCeX 9/IEMEHTOB KOHCTPYKIMN. VICIIONb30BaHbI ONpefensioline
COOTHOIIEHVSI MUKPOCTPYKTypHOit Mogenu CIID, KoTopast XOpowIo 3apeKoMeHjoBaa cebst mpy paciere GYHKIMOHATBHO-
MexaHndeckoro noseferst CII® mpyu pasnmyHbIX TEPMUYIECKNX U MEXAaHIYIECKUX Harpy3Kax. BoIonHeH pacdyer guarpamm
medopmmpoBanus nopucroro NiTi mpym okaruy Opy pasHbIX TeMIIEpaTypax, COOTBETCTBYIOLIMX MAPTEHCUTHOMY
u aycreHnTHOMY cocTostHnio CIID. Pe3ympraTsl MOfEIMpPOBAHVSI ITOKA3a/Iy XOpOIee COIIacue ¢ 9KCIEePUMEHTaTbHBIMI
TaHHBIMIL

KiioueBble coBa: MOZie/IMpOBaHIe, CIVIABBI C TaMATHI0 GopMbl, mopucToiit NiTi.
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1. Introduction

Shape memory alloys (SMA) form a class of smart materials
with specific mechanical behavior controlled by stress and
temperature. Most widely used SMA are NiTi-based alloys
due to their high physical and mechanical characteristics and
the shape memory effect [1,2]. Porous NiTispecimens exhibit
pseudoelastic deformation behavior and strain recovery
on heating, and have high damping capacity coupled with
permeability specific to highly porous materials. All these
features make porous NiTi useful for many applications in
engineering and medicine [3,4]. In order to simulate the
deformation of porous SMA, one needs an accurate but
simple model.

Almost all currently available works devoted to strain
calculations of porous SMA are based on the microstructural
or macroscopic phenomenological model of SMA [5-12]. It
is known that the structural features of pore channels strongly
affect the deformation behavior of the samples [13], and
because of these models, which take into account the effect
of pore channels on mechanical behavior only in an indirect
way, may be insufficient. Thus, it is necessary to develop
methods for predicting the behavior of a porous SMA, which
can both describe the deformation behavior of a solid SMA
and take into account the features of the porous structure.
An attempt to develop such model is undertaken in the
present work.

2. Modeling

For accurate modeling of porous SMA, the shape and
dimensions of pore channels and ligaments must be
considered. In the present work, this was done by analyzing
metallographic sections of the sample. The microstructure
of highly porous NiTi samples obtained by self-propagating
high temperature synthesis consists of many interconnected
interpore ligaments of various sizes. These ligaments
often do not have a distinct orientation relatively to the
sample axis (Fig. 1a). The morphology of the sample with
such a disordered orientation of the pore channels was
approximated by a structure resembling a flat slotted spring
(Fig. 1b), in which beams representing interpore ligaments
oriented perpendicular to the sample axis are connected to
adjacent layers by vertical curved beams. It is assumed that
for the implementation of the model one needs considering
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several types of slotted springs with different values of
geometric parameters (dimensions). Parameters related
to a particular type will be denoted by index i, the value
of which corresponds to the number of the type. One can
consider each slotted spring as built of structural elements,
each including one horizontal beam and one curved vertical
beam (Fig. 2) (each vertical beam shown in Fig. 2 belongs to
two adjacent structural elements).

To avoid solving a complicated boundary-value problem,
two hypotheses are accepted: (1) the deformation behavior of
each beam composing a beam structure can be represented by
its mostly strained region; and (2) Bernoulli’s plane-sections
hypothesis is true, so that any vertical curved beam is shaped
as a circular arc during the entire deformation process. Thus,
to simulate the deformation of such a construction, one has
to solve two problems: compression of a curved beam along
its axis and bending of a beam by a distributed load ¢, the
beam being supported at its ends (Fig. 2). The values of the
displacement of the ends of the vertical beam form boundary
conditions for the corresponding horizontal beam.

Consider a porous specimen loaded by an average
compressive stress ¢ with area of the cross-section S and
porosity p. We replace this specimen by a cascade of slotted
springs belonging to all considered types. The maximum
stress s, in the horizontal beam of i-th type can be calculated
within the frames of the strength of materials as it was shown

in [14]:
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where I, b, and h_ are the length, width and height of a
horizontal beam of the i-th type, a, is the length, along which
the load is distributed with thelinear density g. In Eq. 1 P=qa,
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Fig. 2. Horizontal beam under a distributed load.
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Fig. 1. (Color online) Microphotograph of the studied porous NiTi produced by self-propagating high temperature synthesis (dark fields are
voids) (a); a flat slotted spring composed of the structural elements of one type (b).
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is the force applied to one horizontal beam and originating
from the average stress in the porous sample:

P csS(m—1+p)2
(m-1)

where m is the number of vertical curved beams falling to
the cross-section of the sample.

The displacement v, produced by a structural element
consists of the beam deflection w, in its center and the
displacement u, which is the decrease of the distance between
the ends of the curved vertical beam:

()

vEwtu, (3)

The deflection w, within the frames of the strength of
materials assumptions and hypotheses (1) and (2) is related
to the strain e, in the most strained section of the beam.
In this work e, is calculated by the microstructural model
[15], though also any other model could be used. The
displacement u, produced by a vertical curved beam is easily
calculated as the difference between the lengths of the chords
of the curved beam before and after the deformation. Thus:
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where R, and ¢, are the radius and central angle of the vertical
curved beam before deformation, R’ and ¢, are the radius
and central angle after deformation, e, is the maximum
strain in the curved vertical beam. The dependences R/(,)
and ¢,'(¢,) were also derived [16] within the frames of the
hypotheses (1) and (2):
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Substituting the value of the displacements w, and u, from
Eq. 4 into Eq. 3, the displacement produced by i-th structural
element can be found. The stress in the curved beam is
calculated within the framework of the strength of material:
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where b, and h, are the width and the height of vertical
curved beam cross-section. The strain e, of a vertical beam
is calculated using stress value from Eq. 6 and the equations
of the microstructural model [15]. Finally, the strain of the

sample E is determined by the ratio of the total displacement
to the initial length of the sample

2 7)
> (h+H,)

where H. is the gap in the slotted spring of the i-th type (the
distance between two parallel horizontal beams). If the
displacement v, exceeds the value of H, it is supposed that the
contribution of this structural element to the total strain is equal
to the strain E of the elastic body under uniaxial compression.

3. Results

For simulation of the porous SMA behavior, measurements
of the geometric parameters characterizing the pore structure
have been performed. Using a LOMO optical microscope
panoramic photograph of the sample with a porosity of 60%
has been taken, and more than 200 direct measurements
of the cross-section details have been carried out using the
ImageExpertPro software. It was found very important to
determine the modes of distributions of the equivalent beam
structure geometrical parameters. An account of only their
mean values affected the accuracy of the results.

For the numerical implementation of this model, 4 types
of beam elements in the ratios 10:3:5:1 were selected. The
corresponding values are presented in Table 1.

The following transformation temperatures were used for
modeling: M =72°C, M,=57°C, A =92°C, A =107°C, Young’s
moduli in the austenite state E, =70 GPa and in the martensitic
state E, =30 GPa, Poisson’s ratio v=0.33 for the both states.

Fig. 3a shows the simulated stress-strain diagrams of
isothermal compression up to 350 MPa with intermediate
unloadings of the samples with a porosity of 60% in the
martensitic state at temperatures 25, 45, and 65°C. The dashed
lines indicate the experimental curves [17]. The stress-strain
diagrams for porous TiNi sample under compression in the
austenitic state at temperature 160°C is shown in Fig. 3b. The
curve indicated by the dashed line illustrates the experimental
data [17], the solid line corresponds to the numerical results.
The non-linear character of the theoretical curves is due
to the non-simultaneous start of different deformation
mechanisms in beams with different dimensions. In general,
the theoretical approach gives a satisfactory description of
the experimental data.

Table 1. Geometrical parameters selected for the numerical

implementation of model.

Parameter Type of structural element
1 2 3 4
R, mm 0.15 0.2 0.3 0.4
¢, rad 1.13 1.64 0.8 0.9
h, mm 0.03 0.07 0.05 0.04
b, mm 0.08 0.06 0.11 0.15
I, mm 0.2 0.3 0.15 0.7
a, mm 0.05 0.07 0.1 0.02
h,, mm 0.05 0.03 0.06 0.08
H, mm 0.1 0.15 0.5 0.25
b, mm 0.08 0.06 0.11 0.15
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Fig. 3. (Color online) Stress-strain diagrams of compression of porous TiNi samples with porosity 60% in the martensitic (a) and austenite (b)

states: calculation — solid lines; experiment [17] — dot lines.

4., Conclusion

The proposed approach, based on the theory of bent beams
and the microstructural model of SMA, allows describing
the deformation behavior of porous NiTi with a non-ordered
structure under isothermal conditions in different phase
states. The combination of a proper mechanical model and
equations of the microstructural model is a good tool for
the calculation of the deformation behavior of smart porous
structures.
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