Методика расчета значений реологических параметров для сверхпластичных материалов

Самойлова А.Ю.^{1,†}, Ганиева В.Р.¹, Еникеев Ф.У.¹, Круглов А.А.^{2,‡}

[†]Alina20081963@yandex.ru, [‡]alweld@go.ru

¹ Уфимский государственный нефтяной технический университет, ул. Космонавтов, 1, 450062, г.Уфа ² Институт проблем сверхпластичности металлов РАН, ул. Халтурина, 39, 450001, г.Уфа

Analysis of rheological parameters for superplastic materials

A.Yu. Samoilova¹, V.R. Ganieva¹, F.U. Enikeev¹, A.A. Kruglov²

¹ Ufa State University of Oil & Petroleum, Kosmonavtov, 1, 450062, Ufa ² Institute for Metals Superplasticity Problems, Khalturina St, 39, 450001, Ufa

Предлагается методика расчета значений реологических параметров σ_{o} , K', m' в модели материала $\sigma = \sigma_{o} + K' \xi^{m'}$ по известным результатам измерений напряжения течения σ от скорости деформации ξ . Методика основана на использовании стандартного метода наименьших квадратов в сочетании с численным методом золотого сечения. Предлагаемая процедура обработки результатов измерений позволяет получать однозначное решение задачи идентификации для заданного набора входных данных. Методика применена для сверхпластичных сплавов Al-12Si, Al-33Cu, Al-33Cu-0.4Zr и промышленного алюминиевого сплава марки SUPRAL. Полученные в итоге значения реологических параметров могут быть использованы при проведении практических расчетов.

Ключевые слова: Сверхпластичность, реологические параметры, идентификация

1. Введение

Сверхпластичность (СП) – способность микрокристаллических материалов при определенных температурно-скоростных условиях деформирования испытывать аномально большие по сравнению с обычными условиями пластические деформации [1]. Обработка материалов в условиях СП позволяет повысить предел текучести σ_r и удлинение до разрыва δ , уменьшить анизотропию механических свойств в 1,2-1,25 раза и повысить усталостную прочность [2].

Основной особенностью реологического поведения материалов, находящихся в состоянии СП, принято считать повышенную по сравнению с обычными условиями чувствительность напряжения течения σ к скорости деформации ξ , которую принято количественно характеризовать величиWe propose a method of calculation of rheological parameters σ_{o} K', m' entering the constitutive relation of the form $\sigma = \sigma_o + K'\xi^{m'}$ from the experimentally found dependence of shear stress σ on strain rate ξ . The method is based on the standard least square method and the method of golden section. The method esures a unique solution for the rheological parameters from a given set of experimental data. The method is applied to the Al-12Si, Al-33Cu and Al-33Cu-0.4Zr superplastic alloys and to the SUPRAL aluminum alloy. The calculated rheological parameters can be used for solwing practical problems.

Keywords: Superplasticity, rheological parameters, identification

ной параметра скоростной чувствительности *m*, входящего в стандартное степенное соотношение СП $\sigma = K\xi^m$, (1) где *K* – параметр материала, зависящий от среднего размера зерен и других структурных характеристик [3]. Несмотря на большое значение, которое придается параметру *m*, в литературе по СП не предложено единой общепризнанной методики его экспериментального определения [4]. В то же время, значение этого параметра принято указывать практически в каждой публикации по СП; границы СП принято определять, исходя из эмпирического критерия *m*>0,3.

В настоящее время является практически общепризнанным, что величина параметра *m* зависит от скорости деформации, поэтому модель материала (1) применяется на практике только в очень узком интервале изменения скоростей деформации, как правило, не более 1,2 поряд-

ков. В более широком интервале зависимость напряжения от скорости деформации не описывается выражением (1) и имеет характерный сигмоидальный вид (рис. 1). При этом зависимость наклона сигмоидальной кривой *M=∂lnσ/∂lnξ* имеет характерный куполообразный вид (рис. 2). В литературе не всегда проводится четкое различие между параметрами т и М [4-6], однако общий вид кривых, показанных на рис. 1, 2, не подвергается сомнению и используется на практике при аттестации реологических свойств сверхпластичных материалов.

К настоящему времени в литературе по СП предложено множество разнообразных физических моделей СП, обзор которых можно найти, например, в [3, 5]. Многие из этих моделей включают в себя дополнительный реологический параметр σ_0 . Он вводится в соотношение (1) следующим образом:

$$\sigma = \sigma_0 + K' \xi^{m'}, \qquad (2)$$

Определение значений реологических параметров СП К, т в модели материала (1) и о₀, К', т' в модели материала (2) представляет собой актуальную научнопрактическую задачу. В настоящее время не существует справочников, в которых приводились бы эти сведения даже для самых распространенных промышленных сплавов на основе титана, алюминия, железа, никеля и др., которые широко используются в процессах обработки металлов давлением в состоянии СП [7]. Более того, в литературе не предложено общепринятых методик экспериментального определения не только величины параметра *m*, но также и величины реологического параметра σ_0 . В то же время, как отмечено в работе [4], вопрос о том, обладает или нет материал реологическим параметром σ_o , имеет принципиальное значение. С точки зрения механики существование отличного от нуля реологического параметра σ_0 является принципиальным отличием твердого тела от жидкости: если σ_0 ≠0, для решения задачи необходимо использовать методы механики деформируемого твердого тела, если же $\sigma_0 = 0$, – задача должна решаться методами механики жидкости. Поэтому определение величины реологического параметра σ_0 представляет собой не только чисто материаловедческую проблему, но представляет большой практический интерес и для механики обработки металлов давлением.

Целью настоящей работы является разработка методики определения значений реологических параметров σ_{0}, K', m' в модели материала (2), практическое применение которой позволило бы однозначным образом определить их по заданному входному набору данных

$$\{\sigma_{i}, \xi_{i}\}, \qquad i=1,2,\dots,N$$
 (3)

где σ_{i} – напряжение течения, соответствующее скорости деформации ξ_i , N – количество заданных точек.

2. Методы определения реологического параметра σ₀

Бартон [8] предложил определять величину реологического параметра σ_0 путем экстраполяции сигмоидальной кривой СП, показанной на рис.1, в область малых значений ξ , т.е. при $\xi \rightarrow 0$. В результате он нашел, что для сплава олово-свинец эвтектического состава со сред-

Рис. 1. Сигмоидальная кривая СП (схематически).

сигмоидальной Рис. 2. Зависимость наклона кривой $M = \partial ln\sigma / \partial ln\xi$ от скорости деформации ξ (схематически): I, II, III - стадии сверхпластичности

ним размером зерен 6 мкм величина реологического параметра равна σ_0 =0,18 МПа. Метод Бартона достаточно прост и очевиден, однако он основан на графической обработке экспериментальной кривой. Поэтому для его осуществления необходимо иметь большое количество надежных экспериментальных данных, полученных в испытаниях с малыми скоростями деформирования. Проведение такого рода испытаний связано с большими затратами времени.

В 1976 г. Геккини и Баррет провели прямые исследования структуры сверхпластичной эвтектики Pb-Sn, которые подвергались одноосному нагружению непосредственно в колонне электронного микроскопа [9]. Для этого им пришлось сконструировать специальное приспособление оригинальной конструкции. Они приняли, что скорость активной траверсы ν равна

$$=\frac{dL}{dt} + \frac{1}{c} \times \frac{dP}{dt},$$
(4)

где Р – усилие растяжения, 1/х – податливость машины, L – текущая длина образца. При испытании на релаксацию *v* = 0 и из (4) следует, что

v

$$\xi = \frac{1}{L}\frac{dL}{dt} = -\frac{\dot{P}}{\chi L} \tag{5}$$

Са	мойлова	А.Ю. и др.	/ Письма	о материалах т.2	(2012) 240-244
----	---------	------------	----------	------------------	-------	-----------

Зизиения реол	OFWIGCVWY DODON	ASTROP CHEARA AL	125; [27]				Таблица 1			
Т	N	ξ _{min}	ξ _{max}	σ_0	<i>m'</i>	<i>K</i> ′	σ ₀ [24]			
К		C ⁻¹	C ⁻¹	МПа	-	MPa×c ^m "	МПа			
831	12	6,8×10 ⁻⁶	$1,1 \times 10^{-4}$	0,262	0,885	2466	0.260			
811	14	5,1×10 ⁻⁶	1,4×10 ⁻⁴	0,312	0,753	886	0.311			
791	14	4,5×10 ⁻⁶	1,1×10 ⁻⁴	0,373	0,677	574	0.375			
763	15	4,2×10 ⁻⁶	1,0×10 ⁻⁴	0,639	0,633	538	0.636			
Таблица 2 Значения реологических параметров сплава Al-33Cu [28]										
Т	N	ξ _{min}	ξ _{max}	$\sigma_{_0}$	<i>m'</i>	Κ'	σ ₀ [24]			
К		c ⁻¹	c ⁻¹	МПа	-	MPa×c ^m "	МПа			
793	25	6,9×10 ⁻⁵	2,5×10 ⁻³	0,065	0,733	47,09	0.064			
753	22	3,5×10 ⁻⁵	7,7×10 ⁻³	0,206	0,575	39,65	0.201			
713	17	3,2×10 ⁻⁵	7,6×10-3	0,211	0,589	111,5	0.212			
633	10	1,3×10 ⁻⁵	1,0×10 ⁻⁴	0,746	0,582	662,2	0.739			
Таблица З Значения реологических параметров сплава Al-33Cu-0.4Zr [30]										
Т	N	ξ _{min}	ξ _{max}	$\sigma_{_0}$	<i>m</i> ′	K'	$\sigma_{_{0}}[24]$			
К		c ⁻¹	c ⁻¹	МПа	-	MPa×c ^m "	МПа			
793	23	2,0×10 ⁻⁵	3,0×10 ⁻⁴	0,367	0,839	2575	0.369			
753	22	7,3×10 ⁻⁶	1,1×10 ⁻⁴	0,622	0,847	7899	0.627			
713	11	7,9×10 ⁻⁶	6,1×10 ⁻⁵	1,312	0,751	6481	1.308			
Таблица 4 Ваначения реологических параметров сплава Supral [29]										
Т	N	ξ _{min}	ξ _{max}	$\sigma_{_0}$	<i>m</i> ′	K'	$\sigma_0^{}$ [24]			
К		c ⁻¹	c ⁻¹	МПа	-	MPa×c ^m "	МПа			
763	20	3,5×10 ⁻⁵	1,0×10 ⁻³	0,760	0,635	487,2	0.741			
743	20	2,1×10 ⁻⁵	6,7×10 ⁻⁴	1,071	0,628	593,3	1.078			
723	15	5,0×10 ⁻⁵	7,6×10 ⁻⁴	1,232	0,584	501,8	1.207			

Отсюда авторами работы [9] сделан вывод о том, что скорость деформации прямо пропорциональна скорости разгрузки dP/dt. Величину податливости с можно оценить из начального участка зависимостей P от удлинения, длину образца L в расчетах принимали равной ее значению в момент снятия нагрузки (остановки активной траверсы). В результате было получено, что $c=1,13\times106$ Н/м. Результаты измерений кривых релаксации представлены в работе [9] в координатах s -dP/dt (детали вычислений производной dP/dt в [9] не приводятся). В результате были получены типичные сигмоидальные кривые СП, которые имели общий левый предел $s_0=1,3$ МПа для всех полученных кривых (средний размер зерен в исследованных сплавах был от 3 до 10 мкм).

Сравнивая результаты, полученные Бартоном [8] (σ_0 =0,18 МПа) и Геккини и Барретом [9] (σ_0 =1,3 МПа) для одного и того же материала (сплав олово-свинец эвтектического состава с примерно одинаковым средним размером зерен), можно сделать вывод о том, что они расходятся более чем на порядок. Причины такого расхождения остаются неясными.

Теоретически можно определить величину реологического параметра σ_0 из кривых релаксации путем экстраполяции измеренной кривой в область $t \rightarrow \infty$. Однако на практике обычно не удается обеспечить высокую точность измерений на пределе чувствительности регистрирующей аппаратуры, установленной на стандартных испытательных машинах фирм Instron и Schenc Trebel. Кроме того, как справедливо отмечено авторами работы [10], сверхпластичные материалы чрезвычайно чувствительны к малейшим изменениям температуры, что вызывает необходимость принятия экстраординарных мер по обеспечению изотермических условий проведения механических испытаний. К тому же при необходимости проведения микроструктурных исследований в образцах, подвергнутых высокотемпературным испытаниям, их необходимо закаливать сразу после окончания активного нагружения, что исключает возможность регистрации кривых релаксации.

С другой стороны, значения материальных постоянных, в частности, величина реологического параметра σ_0 , определенная по результатам испытаний на релаксацию, не обязательно должна совпадать с величиной этого же параметра, определенной из испытаний с активным нагружением, например, испытаний на растяжение при постоянной скорости движения активной траверсы v=const. В частности, авторами работы [11] получены различные значения σ_0 из испытаний с пассивным и активным нагружением. Авторы работы [12] придерживаются того мнения, что результаты испытаний на релаксацию нагрузки неприменимы для случая, когда имеет место активное нагружение, и по этой причине не могут быть использованы, например, при моделировании процессов сверхпластической формовки.

Мохаммед [13] предложил две различные процедуры определения величины реологического параметра σ_0 для модели материала, которая может быть описана выражением следующего вида

$$\frac{\dot{\varepsilon}kT}{DEb} = A' \cdot \left(\frac{b}{d}\right)^c \left(\frac{\sigma - \sigma_0}{E}\right)^{n'},\tag{6}$$

где А, D, E, b, c, d – постоянные материала.

В соответствии с Процедурой 1 из [13] в логарифмических координатах строится график $\xi kT/D_{gb}Eb - \sigma/E$, причем значения коэффициента зернограничной диффузии D_{gb} и модуля Юнга *E* принимаются по литературным данным. Величина реологического параметра σ_0 определяется как разница между линейными экстраполяциями этой зависимости для стадий I и II СП течения (см. рис. 1). В соответствии с Процедурой 2 входной набор (3) строится в координатах σ – ξ^m , причем величина параметра m'=1/n' определяется как наклон сигмоидальной кривой для оптимального режима СП (стадия II на рис. 2).

Процедура 2 позже получила общее признание и использовалась на практике многими исследователями – см., например, [14–22]. Однако позже автором работы [23] было показано, что методика Мохаммеда математически некорректна, поскольку в основе ее лежит ошибочное утверждение о том, что величина параметра m' равна наклону сигмоидальной кривой СП $M=\partial ln\sigma/\partial ln\xi$ На самом деле параметры m' и наклон сигмоидальной кривой связаны соотношением вида $m'=\sigma M/(\sigma-\sigma_o)$ [23]. Отсюда следует, что Процедура 2, предложенная в работе [13] и позже воспроизведенная многими другими исследователями в принципе не позволяет получить достоверные оценки величины реологического параметра σ_o , поскольку она основана на принятии неверной гипотезы m'=M.

3. Методика идентификации

В работе [24] предложены методики определения реологических параметров σ_0 , K', m' в модели материала (2) по входному набору (3), основанные на использовании полуобратного подхода

к решению рассматриваемой задачи идентификации. Недавно авторами работы [25] предложена идея подхода

к решению анлаогичных задач, которая может быть применена и для определения постоянных σ_0 , K', m'в соотношении (2). Ниже излагается модификация методики идентификации, предложенная в работе [24], основанная на введении процедуры скалярной оптимизации по неизвестному реологическому параметру m' с целью повышения точности расчета значений реологического параметра σ_0 . Введем в рассмотрение следующую целевую функцию

$$\boldsymbol{\Phi}\left(\boldsymbol{\sigma}_{0},\boldsymbol{K}',\boldsymbol{m}'\right) = \sum_{i=1}^{N} \left\{\boldsymbol{\sigma}_{0} + \boldsymbol{K}'\boldsymbol{\xi}_{i}^{\boldsymbol{m}'} - \boldsymbol{\sigma}_{i}\right\}^{2} \rightarrow min, \quad (7)$$

где σ_0 , K, m – неизвестные, которые необходимо определить по заданному входному набору (3).

Предположим, что величина постоянной m'известна. Тогда целевая функция $\Phi(\sigma_0, K', m')$ становится функцией двух переменных, σ_0 и K'; обозначим ее $F(\sigma_0, K')$. Из необходимых условий

минимума $\partial F(\sigma_0, K') / \partial \sigma_0 = 0$, $\partial F(\sigma_0, K') / \partial K' = 0$

следует следующая система уравнений:

$$\sigma_0 N + K' \sum_{i=l}^{N} \xi_i^{m'} = \sum_{i=l}^{N} \sigma_i$$
(8a)

$$\sigma_0 \sum_{i=l}^{N} \xi_i^{m'} + K' \sum_{i=l}^{N} \xi_i^{2m'} = \sum_{i=l}^{N} \sigma_i \xi_i^{m'}$$
(8b)

Легко видеть, что система (8) представляет собой линейную систему уравнений относительно двух неизвестных, σ_0 и K', которая может быть решена стандартными методами, например, по формулам Крамера. В результате получим набор реологических постоянных m', $\sigma_0(m')$, K'(m'), подставляя который в выражение (7), вычислим соответствующее значение целевой функции $F_{min} = F(\sigma_0(m'), K'(m'), m')$. Если теперь построить фун-

кцию $F_{min}(m')$, то можно убедиться в том, что она имеет локальный минимум на отрезке [0,1]. На этом этапе, в отличие от процедуры, использованной в работе [24], введем в программу процедуру безусловной скалярной оптимизации применительно к функции $F_{min}(m')$, в результате чего получим программное средство, реализующее процедуру минимизации целевой функции $\Phi(\sigma_0, K', m')$. В настоящей работе в качестве такой про-

цедуры использовался метод золотого сечения [26].

4. Апробация методики

Прежде чем проводить практическую апробацию методики идентификации, необходимо протестировать ее работу на примере некоторого виртуального материала. С этой целью зададим конкретные значения материальных постоянных σ_0 , K, m из области разумных, и генерируется тестовый набор входных данных (3). После этого необходимо "забыть" о том, что значения материальных постоянных известны и применить разработанное программное средство для их расчета. Сравнивая результат идентификации с использованным при генерации тестового набора реологических постоянных, можно сделать вывод, как о точности используемых вычислительных процедур, так и об отсутствии ошибок в разработанном программном средстве.

Для практической апробации предложенных выше методик экспериментального определения реологических параметров СП σ_{o} *К*, *m*, входящих в модель материала (2), используем литературные данные [27–30]. Результаты расчетов приведены в Табл. 1-4, где для сравнения в последней колонке приведены результаты идентификации величины реологического параметра σ_0 из работы [24]. Как следует из результатов расчетов, значения реологического параметра $\sigma_{\scriptscriptstyle 0}$, определенные по методике, предлагаемой в настоящей работе, оказались близки к тем, которые были определены в работе [24]. В отличие от процедуры, использованной автором работы [24], предлагаемый подход позволяет получать решение задачи идентификации с заданной наперед точностью, которую обеспечивает применение метода золотого сечения для численной реализации процедуры одномерной минимизации по величине варьируемого в расчетах реологического параметра *m*'.

5. Заключение

Предложенный в настоящей работе подход к идентификации модели материала $\sigma = \sigma_0 + K'\xi^{m'}$ по заданному входному набору данных $\{\sigma_i, \xi_i\}$ (i=1,2,...,N) основан на минимизации отклонений расчетных значений напряжения течения $\sigma_0 + K'\xi^{m'}_i$ от соответствующих экспериментальных значений σ_i . Численная процедура основана на применении метода золотого сечения и решении системы двух линейных уравнений по формулам Крамера. Результаты практической апробации предложенного подхода позволяют сделать вывод о возможности его практического использования для определения реологических параметров СП σ_0, K', m' .

Литература

- Novikov I.I., Portnoy V.K. Superplasticity of ultrafine grained alloys. Moscow, Metallurgy (1981) 168 p. (in Russian) [Новиков И.И., Портной В.К. Сверхпластичность сплавов с ультрамелким зерном. М.: Металлургия, 1981. 168 с.].
- Masterov V.A., Berkovsrii V.S. Theory of plastic deformation and metal working techniques Moscow, Metallurgy (1989) 400 p. (in Russian) [Мастеров В.А., Берковский В.С. Теория пластической деформации и обработки металлов давлением. М.:Металлургия, 1989. 400 с.].
- 3. Zhilyaev A.P., Pshenichnyuk A.I. Superplasticity and grain boundaries in ultrafine-grained materials. Cambridge, International Science Publishing (2010) 312p.
- Vasin R.A., Enikeev F.U. Introduction in mechanics of superplasticity. Part I. Ufa, Gilem (1998) 280 p. (in Russian) [Васин Р.А., Еникеев Ф.У. Введение в механику сверхпластичности: В 2 ч. Часть І. Уфа: Гилем, 1998. 280 с.].
- Padmanabhan K.A., Vasin R.A., Enikeev F.U. Superplastic Flow: Phenomenology and Mechanics, Berlin– Heidelberg, Germany, Springer-Verlag (2001) 363 p.

- Vasin R.A., Enikeev F.U., Mazurskii M.I. Zavodskaya Laboratoriya, 1998, Vol. 64, 9. Р. 50–55. (in Russian) [Васин Р.А., Еникеев Ф.У., Мазурский М.И. Заводская лаборатория, 1998. Том 64, №9. С. 50–55].
- Smirnov O.M. Superplastic metal working techniques. Moscow, Mashinostroenie (1979) 184 p. (in Russian) [Смирнов О.М. Обработка металлов давлением в состоянии сверхпластичности. М.: Машиностроение, 1979. 184 с.].
- 8. Burton B. Scripta Metallurgica. 5, 669(1971).
- 9. Geckini A.E., Barrett C.R. Journal of Materials Science. 11, 510 (1976).
- Booeshaghi F., Garmestani H. Scripta Mayerialia, 1998, 38 (1), 89 (1998).
- 11. Vasin R.A., Enikeev F.U. and Mazurski M.I. Materials Science Forum .170-172 ,675 (1994).
- 12. Hamilton C.H., Ghosh A.K., Wert J.A. Metalls Forum. 8, 172 (1985).
- 13. Mohamed F.H. Journal of Materials Sciences.18, 582 (1983).
- 14. Cadek J. Materials Science and Engineering. 94, 79 (1987).
- 15. Mohamed F.H. Journal of Materials Sciences Letters, 7, 215 (1988).
- Bieler T.R., Mishra R.S. and Mukherjee A.K. Materials Science Forum. 170-172, 65 (1994).
- 17. Soliman M.S. Scripta Metallurgica et Materialia **31**, 439 (1994).
- Murty G.S., Banerjee S. Scripta Metallurgica et Materialia, 31, 707 (1994).
- Suh S., Dollar M. Scripta Metallurgica et Materialia. 31, 1663 (1994).
- 20. Cadek J., Oikawa H., Sustek V. Materials Science and Engineering A.190, 9 (1995).
- 21. Yang S.T., Mohamed F.A. Metallurgical and Materials Transactions. **26**, 493 (1995).
- 22. Mishra R.S., Bieler T.R., Mukherjee A.K. Acta Materialia, 45, 561 (1997).
- 23. Enikeev F.U. Materials Science and Engineering.A. 276, 22 (2000).
- 24. Enikeev F.U. Zavodskaya Laboratoriya 7, 39 (2002). (in Russian) [Еникеев Ф.У. Заводская лаборатория. 7, 39 (2002).].
- Zagirov T.M., Kruglov A.A., Enikeev F.U. Zavodskaya Laboratoriya, **76** (9), 48 (2010) (in Russian) [Загиров Т.М., Круглов А.А., Еникеев Ф.У. Заводская лаборатория. **76** (9), 48 (2010)].
- Turchak L.I., Plotnikov P.V. Basis of numerical methods. Moscow, Fizmatlit (2003) 304 p. (in Russian) [Турчак Л.И., Плотников П.В. Основы численных методов. М.: Физматлит, 2003. - 304 с.].
- 27. Chung D.W., Cahoon J.R. Metal Science. 13, 635(1979).
- Holt D.L., Backofen W.A. ASM Transactions Quarterly. 59, 755(1966).
- 29. Matsuki K., Minami K., Tokizawa M., Murakami Y. Metal Science. **13**, 619 (1979).
- 30. Bricknell R.H., Bentley A.P. Journal of Materials Sciences. 14, 2547 (1979).