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Elementary excitations in anisotropic nanofilms of multiferroics
with competing interactions at the interface
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In this work we study, using the of two-time Green’s functions method, the spectrum of spin waves in a monolayer and
bilayer of anisotropic magnetic film sandwiched between the ferroelectric layers in a magnetoelectric superlattice. Surface
spin configuration is calculated by minimizing the interaction energy. It is shown that the angles between spins near the
surface are strongly modified with respect to the bulk configuration. We include the anisotropy energy between the spin
vectors at sites i and j in the Hamiltonian of multiferroic superlattice. The anisotropy energy stabilizes the angle between local
quantization axes. The anisotropy parameter K, supposed positive, and nonzero only for the nearest interacting neighbors.
It is shown that the magnetoelectric interaction strongly affects the long-wavelength mode of spin waves. The magnetization
of the magnetic film at low temperatures was also calculated. The magnetization M is strongly dependent on temperatures: at
higher T, the larger the magnetoelectric interaction, the greater is M. However, at T'=0, the spin length becomes smaller for
large values of the magnetoelectric interaction due to the so-called spin reduction that takes place in antiferromagnets. As a
result, the crossover (intersection) of the magnetization curves occurs for different values of 0 at low T.
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Ilenpio paboTBI AB/IAETCA MCCIEHOBAHME 3NEMEHTAPHBIX BO30OYXK[EHUII M BIVMAHUA MarHUTO-3JIEKTPUYECKON CBSA3U
Ha CIeKTP CIVHOBBIX BOJIH B aHM3OTPOIIHBIX HAaHOIUIEHKaX MY/IbTM(EPPOUKOB ¢ KOHKYPMPYIOLUMI [TOBEPXHOCTHBIMU
B3aVMOJICVICTBMAMY, a TaKXKe MCCIeNOBaHUE CIMHOBOJ KOH(QUIYpalMy OCHOBHOTO COCTOSHVS IIOBEPXHOCTHBIX C/IOEB
MarHUTHOM IUIEHKM C KOHKYPUPYIOIIVIMM OOMEHHBIM, MAarHUTO9TIEKTPUYECKUM B3aUMOJENCTBUAMY M BHEIIHUM
MarHUTHBIM IIOJIEM, J[IEMICTBYIOIIMM IEPIEHAMKYIAPHO IUIOCKOCTM IUIEHOK CBepxXpemeTKku. VIcrmonmbsysa MeTop
IBYXBPEMEHHBIX TeMIlepaTypHbIX (pyHKIui [prHa, MccIefyeTcs CIeKTp CIMHOBBIX BOIH B OJHOCTIOMHON M JBYCIOMHON
aHM30TPOIIHOJM MAarHMUTHOJM IIJIEHKe, HaXONAMIENCA MeXy CErHETO3NIEKTPUYECKUMU C/IOSIMU MarHUTO3/IEKTPUIECKON
CBepXpelleTK. B raMmibTOHMaHe Y4YTeHBl 9Hepruy OOMEHHOro (eppOMarHMTHOTO B3aMMOJENCTBUA U SHEPrus
aHM30TPONUY MEXIY BeKTOpaMy CIVHOB Ha y3/IaX i U j, KOTOpas CTaOWIM3UPYET Yrol MeXy UX JIOKQJIbHBIMM OCAMU
KBaHTOBAaHMA B MAaTHUTHONM IUIEHKE, S9HEPIUsA JUIONb-AUIIONBHOTO B3aMMOJENICTBMA B CETHETO3NIEKTPUYECKON IUIEHKE,
a TaKKe 9HEpIMs MarHUTOSTEKTPUYECKOrO B3aMMOJENCTBMA Ha uHTep(elice IUieHOK. Ilapamerp aHusoTpomuu K,
IIpefosaraeM IOJIOKUTEIbHBIM, I OT/IMYHBIM OT HYJ/LA TO/IBKO JyIA O/DKAIINX B3auMOJelCTBYIomuX cocepieil. [TokasaHo,
YTO MaTHUTOSTEKTPUYECKOE B3aMMOJENCTBIE OKa3bIBA€T CUIbHOE BO3MENCTBME Ha JIMHHOBOTHOBYIO MOJY CIIMHOBBIX
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BOMH. PaccumTana Taxke HaMarHMYeHHOCTb MAarHMTHON IUIGHKM IpM HU3KMX TeMIlepaTypaX. HamarnmdyeHHocte M
CUJIBHO 3aBUCUT OT TeMIIepaTyp: MpU BBICOKMX T 4eM 6osblile MaTHUTOMEKTpUYeCKoe B3auMofelicTBue TeM 6ombire M.
Opnako npu T=0 ymeHbIIaeTca MOIYIb HAMAarHMYEHHOCTM IPY BO3PACTAHMM MArHUTOSTEKTPUYECKOIO B3auMOfeii-
cTBUA 1U3-3a apdeKTa CIMHOBOTrO cokpaieHus. Takoit apdekT nMeeT Mecto B aHTH(eppomarHeTnkax. Kak cimepcrsue,
IPOUCXOAUT KPOCcoBep (MepecedeHre) KpMBbIX HAMaTHUYEHHOCTH [/ pas/IMYHbIX 3HaYeHnit O mpu Huskoir 1.

KiroueBble cmoBa: cBepxpeleTka, GpyHkiym [prHa, s7eMeHTapHble BO30YX/IeHN, CIIEKTP CIIMHOBLIX BOJTH, MaTHUTO/IEKTPUYECKOe

B3aI/IMO,D;€IZCTBI/Ie.

1. Introduction

Non-collinear spin structures, which are quite interesting by
themselves, became the subject of attention after the discovery
of electrical polarization in some of them [1, 2]. The existence
of polarization is possible due to the inhomogeneous
magnetoelectric effect, namely that electrical polarization
can occur in the domain of magnetic heterogeneity.
In non collinear structures, the microscopic mechanism
of the coupling of polarization and the relative orientation
of the magnetization vectors is based on the interaction of
Dzyaloshinskii-Moriya [2-5]. Surface ME effects appears
due to the charge and spin accumulation [6-7]. Thus, the
Dzyaloshinskii-Moriya interaction connects the angle
between the spins and the magnitude of the displacement
of non-magnetic ions. In some micromagnetic structures
all ligands are shifted in one direction, which leads to the
appearance of macroscopic electrical polarization. In [8] it
was shown that the most extensive class of candidates for
the detection of magnetic vortices and anti-vortices includes
the interfaces of magnetic and magnetoelectric superlattices.
In such type of structures the geometry of the material
breaks the central symmetry and, therefore, can lead to the
appearance of chiral magnetoelectric interactions. Note here
that properties of a helimagnetic thin film with quantum
Heisenberg spin model by using the Green’s function
method was investigated in [9]. Surface spin configuration
is calculated by minimizing the spin interaction energy.
The transition temperature is shown to depend strongly
on the helical angle. Results are in agreement with existing
experimental observations on the stability of helical structure
in thin films and on the insensitivity of the transition
temperature with the film thickness.

Recent studies are focused on the interface-induced effects
of magnetoelectric superlattices [10 -16]. The superstructures
naturally lead to the interaction of magnetic vortices on
different interfaces, which has unique dynamics compared to
the interaction of the vortices in the 2D magnetic films.

We consider in this paper a magnetic films sandwiched
between ferroelectric films. The aim of this paper is to propose
a new model for the coupling between the magnetic film and
the ferroelectric film by introducing a chiral magnetoelectric
interaction. It turns out that this interface coupling gives rise
to non collinear spin configurations in zero applied magnetic
field. Using the Green’s function method, we study spin-
wave excitations in zero field of a two type of superlattices:
anisotropic magnetic monolayer sandwiched between
monolayer ferroelectric film and anisotropic magnetic bilayer
films sandwiched between two ferroelectric layers. We find
that the chiral magnetoelectric interaction affects strongly
the long wave-length mode.

The Chapter is organized as follows. Section 2 is devoted
to the description of our model and the determination of the
ground-state spin configuration. In section 3 we show the results
of the Green’s function technique in zero field for a monolayer
and a bilayer. Concluding remarks are given in section 4.

2. Model and ground state
The Hamiltonian of this multiferroic superlattice is expressed

as:
[5%5,]-
(1)

_ "3 .G IB. B n o,
H——ZJ,./.S,.-SJ.— ijpi'Pj_ZJ e b

ij ij.k
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where gi is the spin on the i-th site, /"> 0 the ferromagnetic
interaction parameter between a spin and its nearest
neighbors (NN) and the sum is taken over NN spin pairs.
We consider Ji">0 to be the same, namely J", for spins
everywhere in the magnetic film.

We describe the magnetic film with the Heisenberg
spin model on a simple cubic lattice. R is the polarization
on the i-th lattice site, polarizations are Ising-like vectors of
magnitude 1, pointing in the +z direction, J/ the interaction
parameter between NN and the sum is taken over NN sites.
Similar to the ferromagnetic subsystem we will take the same
]f J/ for all ferroelectric sites. The coeflicient of the interface
couphng is proportional to (P ) which depends on T. In last
ansotropic term K, is supposed to be positive and we take
K,,=Kfor NN palr in the xy plane, for simplicity. If we choose
the vector J"e, P, perpendicular to the xy plane then the
interface interaction energy is minimum when the spins are
in the xy plane because J™e, P, is parallel to [S xS, ] One
can choose any orlentatlon for J"e, P but in that case to
have the minimum energy the plane contalnlng S and S
should be perpendicular to J"' e, P the spins are not in the
xy plane, making the spin ground state configuration analysis
difficult.

In nanofilms of superlattices the magnetoelectric
interaction is crucial for the creation of non-collinear long-
range spin ordering.

Let us determine the ground state spin configurations
in magnetic layers, sandwiched between ferroelectric layer.
Since the polarizations are along the z axis, the interface
magnetoelectric interaction is minimum when S, and §.
lie in the xy interface plane and perpendicular to each other.
However the ferromagnetic exchange interaction amon
the spins will compete with the perpendicular P [S X S
configuration. The resulting configuration is non Collineat.
We note that the ferroelectric film has always polarizations
along the z axis even when interface interaction is turned on.
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By symmetry, each spin has the same angle 6 with its four
nearest neighbors in the xy plane. The energy of the spin §,
gives the relation between 6 and J”

E, =—4]"§" cosO+8]" P*S’sin®, ©)

where 0=|6, | and care has been taken on the signs of
sin6, when countlng NN, namely two opposite NN have
opposrce signs, and the oppossite coefficient e, - Note that the
coefficient 8 of the second term is due to the fact that each
spin has 4 coupling spin pairs with the NN polarization in the
upper ferroelectric plane, and 4 with the NN polarization of
the lower ferroelectric plane (we are in the case of a magnetic
monolayer). The minimization of E, yields, taking P*=1 in
the ground state and S=1,

dE, _ 00 2 &
do J"

mf
=tan0 = 0= arctan[—zljj (3)

The value of 0 for a given —2] "/ J™. We see that when J"'— 0,
one has 60, and when J"/—> —co, one has 0—>m/2 as it
should be. Note that we will consider in this paper J"/<0 so
as to have 0> 0.

In the case when the magnetic film has a thickness, the
angle between nearest neighbors spins in each magnetic
layer is different from that of the neighboring layer. It
is more convenient using the numerical minimization
method called “steepest descent method” to obtain the
GS spin configuration. We use a sample size NxNxL.
For most calculations, we select N=40 and L=8 using
the periodic boundary conditions in the xy plane.
Exchange parameters between spins and polarizations are
taken as J"=J/=1.

We investigated the following range of values for the
interaction parameters J™: from J™=0 to J"=-6.0 with
different values of the external magnetic and electric fields.
Fig. 1 shows the GS configurations of the magnetic interface
layer for small values of J™: —0.15, —0.75. Such small values
yields small values of angles between spins so that the ground
state configurations have ferromagnetic and non collinear
domains.

For larger values of J™, the GS spin configurations
have periodic structures with no more mixed domains. We
show in Fig. Sla (Supplementary Material) examples where
J™=-0.15 and -0.75. One can see that each spin has the same
turning angle 0 with its NN in both x and y direction. This
explains the structures shown in Figs. S1b. The periodicity
of the diagonal parallel lines depends on the value of 6. With
a large size of N, the periodic conditions have no significant
effects.

3. Spin waves in zero field

Let us show theoretically spin-waves (SW) excited in
the magnetic film in zero field. The method we employ is
the Greens function technique for non- collinear spin
configurations. In this section, we consider the same
Hamiltonian supposed in Eq. (1) but with quantum spins of
amplitude 1/2.

As seen in the previous section, the spins lie in the
xy planes, each on its quantization local axis lying in the
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Fig. 1. Spin-wave energy E(k) versus k (k=k =k _) for 0=0.3 radian (a)
and 6=1 (b) in 2D at T=0. See text for comments.

xy plane. Expressing the spins in the local coordinates, one
has .
S =8x+S'y,+Sz

c _ Xja Ji A Z; A
§,=8'x,+8"y,+5'z,
where the i and j coordinates are connected by the rotation

x] —cosﬂ z +sm9,]x1

z;=-sinb, z +cosb, x,, ¥, =7,

where 6, =6,—6, being the angle between S and S
The ground State spin configuration for one monolayer is
periodically non collinear. For two-layer magnetic film, the
spin configurations in two layers are identical by symmetry.
For quantum calculations we consider the case of spin
one-half S§=1/2. Expressing the total magnetic Hamiltonian

- _ mg ¢ _ m, D . <C xS
H=-3755, Zkz e, B [SxS] @
1,1 L1,
in the local coordinates. Writing §. in the coordinates

(x,,9,,2,), one gets the following e)échange Hamiltonian
from Egs. (1) -(4)

=—Z] { (cos6,,~1)(S7S; +S.S;)
+i(cosew +1)(878;+8757)
oS

+%sin9iyj(8,.++8i )SZ—Esme SE(S;+S;)
i,j51 )
" p* P
+2 Z[(Si +$, )(Sj +S; )‘

4 W
ij :|'

+487S;
Note that P=1 in the ground state.

—sin0, .S.ZS?}

sin©
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We now define the following two double-time Green’s
functions as

G, (tt)= <<Sf (£):8; (t)>>
==i0(e=t'){[ 87 (£):5; () ])»
E,(t.t)= <<s; (t);s;(t’)>>
==i0(e—){[ 57 (£).5; (¢)])-
The equations of motion of these functions

25 05 ()]t -
~(([H08 ]57)),

4B (b0) ,
1hT=<[ t)]
—<<[HM,S;];3; ))

For the H and H_ parts, the above equations of motion
generate terms such as <S S'5S; >> and <<S S'58; >> These
functions can be approximated by using the Bogolyubov —
Tyablikov decoupling [18] to reduce to the above-defined G

and F functions:
(s =75 )

((srs5s;)) = (s0){(s387)) =

For the magnetoelectric term, the commutation relations
[Hmf, S?] one can obtain:

] (P*) Y sin0[ %S (87 +5 ) 42557 |
1
This leads to the following type of Green’s function:

((s7stss7)) = (8708558, )

We use the following Fourier transforms in the plane of
the and Green’s functions:

Ja(e-

' _ 1 7 —io(t-t) g ,'];X’4(§i,§‘)
Gi,j(t’t ’(D) B Z J. dkxye g(o‘)’kxz)e ’ ! >
1 I i ' 7 ik (R—R.
E (tt,0)=—[dk e ™™ f(wk, )™,
’ xy 2
’ A BZ

where the integral is performed in the first xy Brillouin zone
of surface A and w is the spin — wave frequency. One can
define the energy of spin waves E in the following.

For a monolayer, we obtain after the Fourier transforms

(E+W)g+df =2(8°)
~®dg+(E-Y)f =0,
where ¥ and @ are
Y=J" {8<Sz>cose(l+]Iij—4<sz>y(cose+l)}
—4J" (P*)sin0(S" )y+8J" (P*)sin0(s*),
O =4]" <Sz>y(cose—1)—4]'”f <Pz>sin6<52>y,

where y=(cosk a+sinka)/2, k_and k, being the wave-
vector components in the planes, a the lattice constant.

(5)

The spin waves energies are determined by the equation
(E+¥)(E-¥)+D* =0
E-¥+®’=0 (6)
=+ /(V+0)(¥Y-).

We see that if 6=0 we have ® and the last two terms of ¥
are zero. We recover then the ferromagnetic spin wave
dispersion relation

E=27]"(8*)(1-7),

where Z=4 is the coordination number of the square lattice
(taking K/J™=0).

On the other hand, if =m, we can see that ¥ =8J"(S?)
and @ =-8]"(S?)y. The antiferromagnetic spin wave energy

E:ZZ]'”<SZ>\/1—y2.

In the presence of a chiral magnetoelectric interaction,
we have 0<cos0<1 (0<0<m/2). If K/]J"=0, the quantity in
the square root of Eq. (6) is always >0 for any 0. It is zero at
y=1. We do not need an anisotropy K/]™ to stabilize the spin
wave at T'=0. If K/J™#0 then it gives a gap at y=1.

We show in Fig. 1 the spin wave energy calculated
from Eq. (6) for 0=0.3 radian (217.2 degrees) and 1 radian
(257.30 degrees). All the figures are obtained with J"=1,
J/=1, K=0.001. The spectrum is symmetric for positive and
negative wave vectors and for left and right precessions. Note
that for small values of § (i. e. small /™) E is proportional to k?
at low k (Fig. 1), as in ferromagnets.

However, for strong value of magnetoelectric coupling
J™ at the interface, energy is proportional to k as seen in
Fig. 1b., similar to that in antiferromagnets [13]. The change
of behavior is progressive with increasing J™, no sudden
transition from k? to behavior is observed.

In the case of S$=1/2, the magnetization is given by

<SZ>:%—%_Udkxdky |

where for each k one has +E, values.

Since the energy depends on the magnetization, (S?) can
be calculated at finite temperatures self-consistently using the
above formula.

We show in Fig. 2 the magnetization M (5(S?)) calculated
by Eq. (7). M depends strongly on J™: at high T, larger J™
yields stronger M. However, at T=0 the spin length is
smaller for larger 0 due to the so-called spin contraction in
antiferromagnets [17]. As a consequence there is a cross-
over of magnetizations with different 6 at low T as shown in
Fig. S2 (Supplementary Material).

Consider magnetic bilayer between two ferroelectric
films. By symmetry, spins between the two layers are parallel,
the energy of a spin on a layer is

E=-4]"S’cos0 -] "S?+4]"P=S%sin 6,

where there are 4 in-plane NN and one parallel NN spin
on the other layer. The interface coupling is with only one
polarization instead of two (see Eq. (2)) for a monolayer for
comparison.
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The minimum energy corresponds to tan 6 =—J"//]".

Writing the Green’s functions for each layer and making
Fourier transforms in the xy planes, we obtain a system
of coupled equations. For a bilayer, the SW energy is the
eigenvalues of the following matrix equation

R(E)x=u
Where
' 2(87)8,,
_ .fl,n' _ O
X = , u= ,
gz,n' 2<SZZ 6Z,n
fl,n' 0
where E=hw and R(E) is given by
E+Y, D, A, 0
-®, E-¥, 0 A,
A, 0 E+VY, o, |
0 -A -0 E-V¥

with
Y =] [8<Sf>cose(l+K/]'”)—4<Sf>y(cos@+1)}
=2J"(8;)=4)" (P*)sin0(S; )y+8J" (P*)sin0(S; ),

Y, =-J" [ <Sz>cos6(l+K/] ) 4< c056+1}
—2]< > 4]mf<PZ>s1n9<S >+8]'”f< >sm6< >

D, :4]'"<SZ> (cose 1 4]mf<PZ>s1n9< > n=12
~2J" (87 )—4J" (P )sin0(S; ) +8]" (P )sin0,

A, =2J"(S}),

Note that by symmetry, one has (S7)=(S,?).

We show in Fig. 3 the spin wave spectrum of the bilayer
case for a strong value 6 =0.6 radian.

The first mode has the E oc k antiferromagnetic behavior
at the long wave-length limit for this strong 0, the higher
mode has E oc k> which is the ferromagnetic wave due to the
parallel nearest neighbors spins in the z direction.

n=12.

0. 5wy

n
.. =
M T e N bl B
04 .« '| LT
) L | I..
. -
- : u
0.3F . L ]
1 [
.~ [ ]
—
0.2} gy . =
e n
| . 4
0.1 om
0 0.2 0.4 0.6 0.8 1 1.2 1.4
T

Fig. 2. (Color online) Spin length M=(S?) versus temperature T for
a 2D sheet with 6=0.175 radian (magenta void squares), 0=0.524
(blue filled squares), 6=0.698 (green void circles), 6=1.047 (black
filled circles).
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Fig. 3. Spin-wave energy E versus k=k =k at T=0 for a bilayer with
0=0.6 radian.

4. Conclusion

Using the of two-time Greens functions method, we
investigate the spin waves energy in a monolayer and
bilayer of anisotropic magnetic film sandwiched between
the ferroelectric layers in a magnetoelectric superlattice.
We include the anisotropy between the spin vectors at
sites i and j in the Hamiltonian of multiferroic superlattice.
The anisotropy energy stabilizes the angle between local
quantization axes. The anisotropy parameter K, supposed
positive, and nonzero only for the nearest interacting
neighbors. In conclusion, we emphasize that the chiral
magnetoelectric interaction affects strongly the spin wave
mode at k—> 0. Quantum fluctuations in competition with
thermal effects cause the cross-over of magnetizations of
different J™: in general stronger /™ yields stronger spin
contraction at and near T'=0 so that the corresponding spin
length is shorter. However at higher T, stronger J™ means
larger © which yields stronger magnetization. It explains the
cross-over at moderate T.

Supplementary Material. The online version of this paper
contains supplementary material available free of charge at the
journal's Web site (lettersonmaterials.com).
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