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Transition to thermal equilibrium in a two-dimensional harmonic triangular lattice with nearest neighbor interactions is
investigated. Initial conditions, typical for molecular dynamics simulations, are considered. Initially, particles have uncorrelated
random velocities, corresponding to initial kinetic temperature of the system, and zero displacements. These initial conditions
can be realized by heating of the system by an ultrafast laser pulse. In this case, the kinetic temperature of the system oscillates.
The oscillations are caused by the redistribution of energy between kinetic and potential forms. At large times, energies
equilibrate and temperature tends to the equilibrium value equal to a half of the initial temperature. In our previous works, an
integral exactly describing this transient thermal process has been derived. The integrand depends on the dispersion relation
for the lattice. The integral contains large parameter, notably time. In the present work, we investigate large time behavior of
the kinetic temperature. Simple asymptotic expression for deviation of temperature from the steady state value is derived.
The expression contains three harmonics with different frequencies and amplitudes. Group velocities corresponding to these
frequencies are equal to zero. Two frequencies are close and therefore beats of kinetic temperature are observed. Amplitude of
deviation of temperature from the steady state value decreases inversely proportional to time. It is shown that the asymptotic
formula has reasonable accuracy even at small times of order of one period of atomic vibrations.
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OcunniAnuy TeMnepaTypbl B rapMOHUYECKO TPEYTOIbHOM
peUI€TKE CO C]IY‘I?[]?[HI)IMI/I HAaYa/IbHBIMI CKOPOCTAMMU
Hammnn B. A.M, Kyspkun B. A

Mucturyt npobnem mamnnosefenns PAH, Bonpmoit p. B.O. 61, Cauxr-Iletep6ypr, 199178, Poccus
*Cankr-Iletepbyprcknmit momurexHudecknit yansepcuret [lerpa Benukoro, yi. ITonntexunyeckas, 29,
Cankr-Iletep6ypr, 195251, Poccus

B pabote nccnenyercs mepexoy K COCTOSIHIIO TEIVIOBOTO PABHOBECHA B IBYMEPHOIT 6€CKOHEYHON TapMOHINYECKO TPEYTolb-
HOII pelleTKe C B3aMMOZAEIICTBIAMY O/YDKAIIINX cocefiell. PaccMaTpyuBaloTCs HadajIbHBIE YCTIOBYMA, TUIIMYHBIE [/ MOJIEKY-
JIAPHO-MHAMIYECKOTO MOZIeTMPOBaHMA. B HauambHbBI MOMEHT Bp€MEH! YaCTUIIBI MMEIOT HEKOPPEMMpPOBaHHbIE CITy4YaliHble
CKOpPOCTH, COOTBETCTBYIOI[M€ Ha4ya/lbHOV KMHETUYECKON TeMIlepaType CUCTEMBbI, M Hy/eBble IepeMelleHns. JJlaHHble Ha-
YaJIbHbIE YCTIOBUA MOXKHO PacCMaTPMBATh KaK pe3y/nbTaT BO3/E/ICTBUA Ha CHCTEMY yAbTPAaKOPOTKOTO JIa3€PHOTO MMITY/IbCa.
ITpu mepexoge K TEIIOBOMY PaBHOBECHIO TeMIIepaTypa COBeplIaeT 3aTyxalollye KomeOaHMsA, BbI3BAHHbIE YpaBHUBAHUEM
KIHEeTIYeCKOJ U ITOTeHIIMaIbHON 3Hepruit. C TedeHreM BpeMeHN TeMIlepaTypa CTPEeMIUTCS K paBHOBECHOMY 3HA4€HMIO, paB-
HOMY IIOJIOBVHEe Ha4ya/IbHOJ TeMIepaTypbl. B mpenbInymmx paboTax aBTOpOB € MICIO/Ib30BaHVeM AUCKPETHOrO IIpeobpasoBa-
HuA Oypbe NONTyYeH MHTETPasl, B TOYHOCTU ONMCHIBAIOIINIL JaHHBIN MePeXOfHbIil mpolecc. [logpIHTerpanbHOe BhIpaskeHne
3aBUCUT OT [YICIIEPCYIOHHOTO COOTHOIICHNA I pacCMaTpMBaeMOll pelleTKy. VIHTerpal coep>KUT 60IbIION IapaMeTp —
BpeMs, IIpollefliee C MOMEHTa BO3MYLIeHyA. B HacTosAmell paboTe MCCIenyeTcs IOBefeHye TeMIepaTyphl Ipy OO/IbIINX
BpeMeHax. C ICIIONb30BaHNEM aCUMIITOTIYECKIX METONOB IOTyYaeTCs IIPOCTOE BhIpaskeHNe /I OTKIOHEH TeMIepaTyphl
OT paBHOBECHOT'O 3HaYeHVs. BpipakeHne mpefcTaBiaeT co00il CyMMY TpeX FapMOHUK C Pas3IMYHBIMY YaCTOTAMU M aMIUIU-
Tygamu. ITokasaHo, 4TO IPyNIOBble CKOPOCTH, COOTBETCTBYIOINE JaHHBIM YaCTOTaM, PaBHbI HY/IO. JIBe 4aCTOTHI ABMAIOTCA
O/IM3KUMIM, YTO IPUBOAUT K OMEeHNAM. AMIUINTY/Ia OTK/IOHEHVIS TEMIIepaTyphbl OT PaBHOBECHOTO 3Ha4YeHMA yObIBaeT 0OpaTHO
IPONOPLMOHAIBHO BpeMeHU. [TpoBefieHo cpaBHEHNe IIOTTyYeHHOI aCUMIITOTIYeCKOT OPMYIIBI C TOYHBIM peleHyeM. [Toka-
3aHO, 4TO (hOpMy/Ia MMeeT IpMeMIeMyI0 TOYHOCTD Ja)ke Ha MaJIbIX BpeMeHax IOps/iKa OHOTO IIepyofa Koe6aHuII aTOMOB.

KnroueBbie cmoBa: TpeyrojibHasA peueTka, I‘apMOHI/I‘{eCKI/I]?I KpuCTaml, KNHETNYECKaA TEMIIEpaTypa, 6I/ICHI/IH, IIepexo] K TEIJIOBOMY
PpaBHOBECHIO, HepaBHOBeCHbe;I Imponecc.

16



Tsaplin et al. / Letters on Materials 8 (1), 2018 pp. 16-20

1. Introduction

Analytical description of nonequilibrium thermal processes
in crystals is a long-standing problem in mechanics and
physics of solids [1,2]. An example of such process is a
transition of a system from nonequilibrium state towards
thermal equilibrium. An initial nonequilibrium state can be
caused, for example, by an ultra short laser pulse [3-7] or
by propagation of shock waves [8,9]. In these cases, energy
is unequally distributed among degrees of freedom and the
kinetic temperature can demonstrate tensor properties [8,9].
After the end of nonequilibrium process, material relaxes
towards thermal equilibrium. Kinetic and potential energies
tend to equilibrium values.

Similar phenomenon is observed in the beginning of
molecular dynamics simulations at finite temperatures
[10]. In a typical simulation, particles have random initial
velocities and they are located at equilibrium positions.
Then initially, total and kinetic energies of the system are
equal. In the beginning of simulation, kinetic and potential
energies oscillate in time and tend to the equilibrium values.
The kinetic temperature, proportional to kinetic energy, also
oscillates. In the present paper, we investigate this strongly
nonequilibrium process. Note that the process does not
depend on the initial distribution function for velocities.
Behavior of the distribution function and its convergence to
normal distribution is discussed in papers [11,12].

In harmonic crystals, transition to thermal equilibrium
can be described analytically. In papers [13,14], the transition
was investigated in harmonic one-dimensional chain. It has
been shown that oscillations of kinetic temperature in a chain
with random initial velocities and zero initial displacements
is described by the Bessel function. In paper [15], similar
problem was solved for one-dimensional chain with
harmonic on-site potential. In papers [16,17] the results were
generalized for the multidimensional case. In particular, an
exact formula describing oscillations of kinetic temperature
in harmonic triangular lattice has been derived.

In the present paper, we continue the analysis started
in papers [16,17]. In-plane motions of harmonic triangular
lattice with nearest-neighbor interactions are considered.
Initially particles have uncorrelated random velocities,
corresponding to initial kinetic temperature of the system, and
zero displacements. An integral exactly describing oscillation
of temperature in this system has been derived in paper
[16]. In the present paper, we consider long-time asymptotic
behavior of this integral. It allows, in particular, to calculate
characteristic frequencies of temperature oscillations and to
explain physical meaning of these frequencies.

2. Oscillations of kinetic
temperature: an exact solution

In the present section, we recall the derivation of the exact
expression describing oscillations of kinetic temperature in a
uniformly heated harmonic triangular lattice [16].

Particles in the lattice are numbered by indices #, k so that
their radius vectors r, , have form [18,19]

T a(ne +ke), e,=e +e,
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where a is an equilibrium distance between the particles;
basis unit vectors of the lattice e , e, are shown in Fig. 1. Each
particle interacts with six nearest neighbors via harmonic
forces (see Fig. 1). Anharmonicity of interactions is neglected.
Anharmonic effects in triangular lattice are considered, for
example, in papers [16, 20 - 22].

Equations of motion of the particles have form

o2
u,,=ao, (elel '(”n+1,k

teye, '(un,k+1 —2u,, + U, ) +

- 2”)1,k + un—l,k ) +
(1)

tee - (”n+1,k+1 - Zun,k TU ))’

where, @, = \/c/_m , ¢ is bond stiffness, m is particle mass.
Initial velocities of the particles correspond to initial
kinetic temperature of the system. Spatial distribution of
temperaturein thelatticeis uniform (all particleshave the same
temperature). The velocities are independent random vectors
with zero mean and equal variances. Initial displacements are
equal to zero. In this case, initial kinetic energy is equal to
the total energy of the system. Potential energy is equal to
zero. In papers [16, 17] it is shown that the difference between
kinetic and potential energies (Lagrangian) oscillates in
time. It tends to zero as time tends to infinity, i.e. kinetic
and potential energies equilibrate as predicted by the Virial
theorem. The oscillations of the Lagrangian are described by
the differential-difference equation similar to equation (1).
The equation for Lagrangian is solved using the discrete
Fourier transform. The exact solution allows to calculate the
deviation 8T of kinetic temperature from the steady state

value:

T,

ST=T-"L=
2

1= ﬁcos(a)j(p,s)r)dpds, r=2\2wy,
00

)

2
T

(I, +1,),
(2)

where T, is the initial kinetic temperature of the crystal;
7 is dimensionless time; w , w, are branches of the dispersion
relation for the triangular lattice defined as non-negative
solutions of equation

a);1 - ZBa)]Z. +C=0, B=sin’p+sin’s+sin’*(p+s),

C= 3[sin2(p + s)(sinzp + sinzs) +sin’p- sinzs} 3)
Parameters p, s are components of the wave-vector pe'+se’,
where e’ are vectors of the reciprocal basis e, (¢'-e,= ).

In the following section, we focus on the large-time
asymptotic behavior of kinetic temperature. Asymptotic
analysis allows to calculate the decay rate and frequencies of
temperature oscillations.

Qo Q@ (nk+1)
e2
e3
Qo (n,k) Q@ (n+lLk+1
e1
Qo @ (n+l,k)

Fig. 1. Particle with indices (n,k) and its nearest neighbors in
triangular lattice.
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3. Large time behavior of kinetic temperature

In the present section, we derive simple formula describing
large time behavior of the kinetic temperature using
asymptotic methods [23,24].

Consider asymptotic behavior of integrals (2) at large time
(T—> o). We reduce the integration domain using symmetry
of functions w, (p,s). In particular, the functions satisfy the
condition , (p, s)=wj (s,p). Using this and other symmetry
conditions, we show that integrals over 12 minimal triangles
in Fig. 2 are equal. Therefore integrals I take the form

I,=12f cos(a),.(p,s)r)dpds. (4)

We change variables p, s to w , w, in integral (4). Then the
triangle ABC is mapped on the curvilinear triangle O,0,0,
(see Fig. 2).

Using equations (3) and (A2), we obtain the following
expressions for boundaries of the integration domain (sides
of the curvilinear triangle O, 0,0.,):

17273

AB<-00,: o =0,/3- /a) O<a)2_%,
BC < 0,0,: o,=0,[3~ /a)], /<wl<f (5)

AC < 00;: wQ:E, 0<am, <3,

To calculate Jacobian J of the transformation p, sto w , w,,
we make two consecutive changes of variables p, s to B, C and
B, Cto w, w,. Corresponding Jacobians are calculated using
formula (3)

J, = (Q000B i p+s )_1

p—s pt s

Jz(a),,a)z):2(a),2 +a)22)a)] o,.

Note that B, C and w,, w, are related via formula (3) and
Vieta’s theorem. Then the resulting Jacobian ] is calculated as

dp Os

0w, 0w,
J(wlawz): ap s :|J1|J2'

ow, Ow,

Jacobian ] is finite and it is not equal to zero inside the
integration domain in formula (2). Therefore there is a unique
correspondence between p, sand w , w,.
Changing variables in integral (4) yields
1,=12 [[ J(&,o,)co8(w;7) doydom,. (6)
010203

Note that components of the inverse Jacobian are equal to
components of the group velocities.

s

ol Ry NN

After minor algebra in formula (6), we obtain the Fourier-
type integrals:

NG
I = jﬁ(w1)cos(w1r)dw1a
0

3/2

I,= .[ Jfy(@,)cos(o,7)dw,,

(7)
fl(w1):12 I J(wlaa)z)da)zv
(@)
fr(@)=12 [ J(o,0,)do,
(@)

where A (w), A (w,) are integration domains determined by
formulas (5).

In the appendix, it is shown that asymptotic behavior
of integrals I, depends on the values of functions f; on the
boundaries of the integration domain and on singularities
of these functions (see formula (A7)). It can be shown that
functions f(w), defined by equations (7), are regular inside
the 1ntegrat10n domains (0; \/—q 3) and (0; 3/2), except for points
0,(0,0), 0,(3/2,3/2), O,(\3,1), 0,(9/(42),3V3/4) (see
Fig. 2). Points O, and O, do not contribute to asymptotics
of 1ntegrals I. The contrlbutlon is zero because £(0) =0 at the
beginning of the integration interval and f,(3/2) =0 at the end
of the integration interval.

Functions , f,, have logarithmic singularities at the points
9/(4\2) and 1 respectively. Using formulas (7), we show that
in the vicinity of these points

9

[6
=~ -8, |=In|o, ———=
/ 70" a2

Contribution of singular points to the asymptotics is
proportional to coefficients L =-8V6/7, L= 12/\7 (see
formula (A7)). Another COI’ItI’lbuthIl to asymptotlcs of the
integral I, is from the value of function f, at the boundary
point w= \/3 It is shown that

lim fi(@)= 437 9)

12
, ) zﬁlnk{)z —1|. (8)

Derivation of formulas (8) and (9) is given in paper [25].
Summing contributions of all special points yields:

437 \F 9
I = 2,/=cos| —=7
T 7 42

I~ 127 cost
2 ﬁ Z’

Substituting formula (10) into formula (2), we obtain the
asymptotic expression describing large time behavior of the
kinetic temperature:

Jsine) |

(10)

3 ®2 G
g Q}\l
1 )
//V///
=
0, o
0 3/2

Fig. 2. Integration domain in variables p= \3 (p+5)/2,5=(s—p)/2 (left). Integration region in the variables w,, w, (right).
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N 2\/Iﬂa) t {2\/5‘:08[3 co*tj "
+ 3sin(2x/ga)*t)+%cos(2\/§a)*t)}.

Formula (11) describes the deviation of temperature from the
steady-state value. It shows that the deviation decays inversely
proportional to time. Oscillations of temperature have three
main frequencies

QI:%@, 0, =2J60,, Q,=220.,

These frequencies correspond to three special points of
integrals I. Note that frequencies Q and (, are close.
Therefore beats of kinetic temperature are observed.

We show using formulas (3) that group velocities
corresponding to frequencies (12) are equal to zero:

oT =
(11)

(12)

0w,

op

_6(012
 os 0

_9o
Pl

_ 0oy
Os 0,

=0.

0

Note that the same fact is observed in one-dimensional chain
with harmonic on-site potential [15].

Comparison of the exact expression (7) for T with
asymptotic formula (11) is shown in Fig. 3. For t>2.5¢,
where t, =27/ w,, the difference between exact and asymptotic
formulas is less than 6%.

Thus formula (11) describes oscillations of kinetic
temperature even at small times ¢~ ¢,.

4. Conclusions

Oscillations of kinetic temperature in harmonic triangular
lattice with random initial velocities and zero initial
displacements were considered. Simple asymptotic formula
describing large time behavior of these oscillations was
derived. Comparison with an exact solution shows that the
asymptotic formula has reasonable accuracy even at small
times of order of one period of atomic vibrations. It is shown
that deviation of kinetic temperature from the steady state
valueisrepresented as a sum of three harmonics with different
frequencies and amplitudes. The amplitudes are inversely
proportional to time. Group velocities corresponding to

1
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Fig. 3. Oscillations of kinetic temperature in triangular lattice with
random initial velocities and zero initial displacements. Solid
line — asymptotic formula (9); dashed line — exact formula (2).
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frequencies in asymptotics are equal to zero. The same effect
has previously been reported for one-dimensional chain with
harmonic on-site potential [15]. Therefore we assume that
in harmonic crystals frequencies of oscillations of kinetic
temperature correspond to zero group velocities. However
this hypothesis is awaiting a rigorous proof.
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Appendix. Asymptotics of Fourier-type integrals

In the present appendix, we consider asymptotic behavior of
the Fourier-type integral

1= }f(w) cos(wr)dw (A1)

for large values of parameter 7. Assume that f(w) is a
polynomial. Then integration by parts in formula (A1) yields
the following asymptotics:
1=f(b)m+0(i2), r >, (A2)
T T

Formula (A2) is valid for polynomial of any degree. Therefore
it is also valid for function f(w) being regular on the interval
[0,5].

Formula (A2) is generalized for functions having N
discontinuities on the integration interval. Assume that
functions fhas N finite jumps G, at points w, € (0, b):

G = limo(f(cb,. +&)— f(@,—¢)).
Then separating the interval (0, ) into N+ 1 intervals, where
fis regular, and using formula (A2) yields:

(A3)

sinbr

I~ f(b)——li G ;sinar. (A4)
T T i=1

Formula (A4) shows that asymptotic behavior of integral

(A1) depends on discontinuities of function f and its value
f(b) at the boundary point.

Consider logarithmic singularity of function fat the point
w=w’, (0<w'<b). In other words, in the vicinity of this point
the function has form

f(a))len|a)—a)’|. (A5)

Substituting this expression into the integral (A1) yields:

1| —7meoso'T+ 1n|b - a)’| sinbr, @'>0,
I~ T _%+ ln|b| sinbr,
The contribution of the logarithmic singular point to
asymptotics of the integral (A1) is given by the first terms in
these expressions. The second terms is the contribution of the
end of the integration interval w=b.

Generalizing formula (A4) for function f(w) having
N discontinuities (each of them is jump or logarithmic
singularity) at points @, € [0,b), i=1... N, yields:

Iff (w)cos(wr)dw ~ f(b) sinbr _

N
—lZ(Gi sin@,7 + 7L, cos@r).
T i=l
Coefficients G,, L, are defined by formulas (A3), (A5)
respectively. If there is no logarithmic singularity at @, then
L=0.If =0, then corresponding coefficient L, in formula
(A7) should be replaced by L/2 (see formula (A6)).

(A6)

w'=0.

T

(A7)
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