## **Supplementary Material**



**Рис. S1.** Микрофотография поверхности в режиме упругоотраженных электронов (a) и дифрактограмма (b)  $CaCu_{3}Ti_{4}O_{12}$ . **Fig. S1.** Microphotographs of the surface in the regime of elastically reflected electrons (a) and X-ray diffraction pattern (b) of the  $CaCu_{3}Ti_{4}O_{12}$ .





**Fig. S2.** (Color online) Impedance hodograph of sample 1 for *T* (°C): 275 (1); 300 (2); 325 (3); 350 (4); 375 (5); 400 (6); 425 (7) and 450 (8). The figures show frequency in Hz.



Цель формального моделирования заключается в построении максимально точной эквивалентной схемы (ЭС). За основу формальной ЭС берут модель Войта, состоящую из последовательной цепочки *RC*-звеньев (Рис. S3 а).



**Рис. 53.** Эквивалентные схемы (а-е), используемые при построении электрической модели образца. **Fig. 53.** Intermediate equivalent circuits (a-e) used to model electric properties of the samples.

Импеданс двухполюсника (Рис. S3 a) имеет следующий вид [23]:

$$Z = \frac{R}{1 + j\omega\tau},\tag{1}$$

где *j* — мнимая единица; ω — круговая частота; τ = *RC* — постоянная времени, характеризующая скорость саморазряда конденсатора.

При изменении  $\omega$  от  $\infty$  до 0 изображающая импеданс (1) точка на комплексной плоскости (Z', -Z'') опишет траекторию в виде точной полуокружности диаметром *R* с координатами центра (R/2; 0) [23]. Таким образом, форма годографа импеданса (1) зависит только от величины *R*. Постоянную времени т можно определить по функции –Z''( $\omega$ ). В частности, максимум этой функции находится на частоте:  $\omega_{max} = \tau^{-1}$  [23]. Использовать максимум для нахождения постоянной времени удается не всегда. Область наблюдения в импеданс-спектроскопии ограничена диапазоном частот 10<sup>-3</sup> – 10<sup>6</sup> Гц. Вследствие этого  $\omega_{max}$  может оказаться за пределами приведенного интервала частот. Таким образом, прежде всего, необходимо по годографу импеданса образца определить число *RC*-звеньев в ЭС. С помощью Рис. S2 покажем, как это сделать.



**Рис. 54.** Экспериментальный годограф импеданса CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>, измеренный при температуре 300°С (точки) и геометрические построения, позволяющие определить центры кривизны дугообразных частей годографа (а); высокочастотная часть годографа, выделенная прямоугольником С в левой части Рис. S3 a (b).

**Fig. S4.** Experimental impedance hodograph of  $CaCu_3Ti_4O_{12}$ , measured at a temperature of 300°C (points) and geometric constructions, allowing to determine the centers of curvature of the arcuate parts of the hodograph (a); the high-frequency part of the hodograph, highlighted by the rectangle C in the left part of Fig. S3 a (b).

Для определения центра кривизны дуги можно воспользоваться известной теоремой, согласно которой любые перпендикуляры к дуге пересекаются в её центре. На Рис. S4 а элементы годографа аппроксимированы

отрезками прямой линии. От каждого отрезка проведен перпендикуляр. Несложно заметить, что высокочастотная часть годографа имеет центр кривизны в точке А, а низкочастотная часть — в точке В. Исходя из этого можно предположить, что формальная последовательная ЭС должна состоять из двух звеньев.

При моделировании процесса, когда центр кривизны дуги смещен в нижнюю полуплоскости, необходимо использовать ЭС, изображенную на Рис. S4b. В этой схеме вместо конденсатора использован элемент постоянной фазы (CPE), импеданс которого рассчитывают по формуле (2):

$$Z_{\rm CPE} = \frac{1}{T_{\rm CPE}(j\omega)^{P}},\tag{2}$$

где *P* — безразмерный параметр, имеющий величину от 0 до 1; *T*<sub>СРЕ</sub> — параметры с размерностью [Ф<sup>*p*</sup>Ом<sup>*p*−1</sup>; F<sup>*p*</sup>·Ω<sup>*p*−1</sup>]. Импеданс двухполюсника на Рис. S4 b равен [23]:

$$Z = \frac{RZ_{\rm CPE}}{R + Z_{\rm CPE}} = \frac{R}{1 + j^P \omega^P R T_{\rm CPE}}.$$
<sup>(3)</sup>

Выражение (3) отличается от выражения (1) тем, что мнимая единица имеет степень *P*. Мнимая единица на комплексной плоскости отображается в виде вектора единичной длины, располагающегося на мнимой оси (Puc. S5).



**Рис. S5.** Годограф импеданса (3). **Fig. S5.** Impedance hodograph (3).

Комплексное число  $j^p$  также является единичным вектором, повернутым на угол  $\varphi$  относительно мнимой оси. Это следует из теории комплексных чисел. Поскольку мнимая единица в экспоненциальной форме равна:  $j = \exp(j\pi/2)$ , то после возведение её в степень получим следующее выражение:  $j^p = \exp(j\pi P/2)$ . Таким образом, угол  $\varphi$  на Рис. S5 равен:  $\varphi = \pi/2(1-P)$ . Нетипичная ориентация мнимой единицы в выражении (3) означает, что годограф этого импеданса является также полуокружностью, построенной в повернутой системе координат ( $Z_{\varphi}'$ ;  $-Z_{\varphi}''$ ) (Рис. S5). Переход в традиционную систему координат (Z'; -Z'') осуществляется поворотом исходной системы координат на угол  $\varphi$  против часовой стрелки. В результате этого годограф импеданса приобретает вид дуги идеальной окружности. Центр этой окружности располагается в нижней полуплоскости и имеет координаты R/2; R/2 · ctg ( $\pi$ P/2). Отсюда, в частности, следует, что форма годографа (3) не зависит от  $T_{CPE}$ . Этот параметр влияет на частоту  $\omega_{max}$ , при которой мнимая части годографа –Z'' имеет максимум. Расчеты показали, что  $T_{CPE} = R^{-1} \omega_{max}^{-1}$ . Параметр  $T_{CPE}$  не может выступать в качестве параметра среды, так как имеет переменную размерность и зависит от толщины образца. Вместо него следует пользоваться следующую постоянную времени:  $\tau = (RT_{CPE})^{1/P}$ . Эту величину можно считать усредненным временем релаксации неоднородной среды.

Таким образом, при обнаружении смещенных дуг на годографе импеданса необходимо конденсатор в соответствующем звене модели Войта поменять на элемент СРЕ. Полученную таким образом последовательную схему можно было бы назвать «обобщенной моделью Войта».

Вернемся теперь к Рис. S4. Важно определить координаты левой точки пересечения годографа с осью абсцисс. Этот участок импедансной кривой выделен на Рис. S4 а прямоугольником, копия которого представлена на Рис. S4b в увеличенном виде. Аппроксимация годографа в область высоких частот показала, что пересечение имеет место при Z'≈ –250 Ом. Эту особенность импеданса учитывают в ЭС подсоединением к цепи дополнительного резистора *r*, в данном случае, отрицательного знака (Рис. S3 c). Таким образом, координаты центра высокочастотной дуги изменились: (*R*/2 + *r*; *R*/2 сtg π*P*/2).

Недостатком ЭС с (Рис. S3) является то, что отрицательное сопротивление r находится в цепи, моделирующей сквозную проводимость образца. Поэтому двухполюсник с мы заменили на математически эквивалентный двухполюсник d (Рис. S3), воспользовавшись формулами из работы [24].

$$R_{1} = R + r;$$
  

$$R_{2} = r(1 + \frac{r}{R});$$
  

$$Z_{CPE2} = (1 + \frac{r}{R})^{2} Z_{CPE1}$$

В ЭС (Рис. S3d)  $R_2$  может иметь как положительный, так и отрицательный знак. При этом не происходит нарушения закона сохранения энергии, так как в цепи «R2-CPE2» протекают только токи смещения. В этом случае  $R_2$  влияет на фазу импеданса цепи и на угол диэлектрических потерь  $\delta$ . Двухполюсник (Рис. S3d) был впервые предложен в качестве основного звена последовательных ЭС в работе [25].

Теперь необходимо в ЭС учесть низкочастотную часть годографа (Рис. S4a), которая представляет собой несмещенную по вертикали полуокружность. При последовательном соединении RC-звеньев импеданс всей цепи находят суммирование мнимых и вещественных составляющих импеданса всех звеньев. Следовательно, к ЭС (Рис. S3 d) необходимо присоединить ЭС (Рис. S3 a). В результате получаем полную последовательную ЭС (Рис. S3 e). Вычисления по приведенным выше формулам могут быть выполнены автоматически с помощью программы ZView, которая не только определяет значения параметров ЭС, но также рассчитывает их погрешности, строит годографы импеданса и другие частотные характеристики, а также выдает интегральный критерий точности модели: Weighted Sum of Squares и Chi-Squared — ( $\chi^2$ ) [26]. Чем меньше значение  $\chi^2$ , тем ЭС точнее аппроксимирует экспериментальные данные. Поскольку  $\chi^2$  зависит от числа точек на годографе импеданса [26], то при проведении исследований необходимо придерживаться определенного количества частот, приходящихся на одну декаду (points per decade, PPD). Важно также отметить, что на критерий точности влияет не только структура ЭС, но и качество экспериментального материала. Величина  $\chi^2$  весьма чувствительна к уровню шумов экспериментальной установки, к процессу измерений (количество накоплений, продолжительность выдержки после достижения заданной температуры и т. д.). Ускоренная съемка ИС может существенно увеличить  $\chi^2$ .

Величины  $\chi^2$  для ЭС (Рис. S3 e), приведенные в Табл. S1 (столбец 3), свидетельствуют о невысокой точности последовательной электрической модели образцов.

**Табл. S1.** Критерии точности  $\chi^2$  трех ЭС, использованных для моделирования импеданс-спектров трех образцов CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>. **Table S1.** Accuracy criteria  $\chi^2$  of the three EC shown in Figs. S1,6,8 and used to approximate experimental data of impedance spectroscopy.

| <i>h</i> (мм) / <i>h</i> (mm) | <i>T</i> (°C) | χ <sup>2</sup> ×10 <sup>4</sup> (Рис. S1 е / Fig. S1 е) | χ <sup>2</sup> ×10 <sup>4</sup> (Рис. 6 / Fig. 6) | <u>χ</u> <sup>2</sup> ×10 <sup>4</sup> (Рис. 8 / Fig. 8) |  |
|-------------------------------|---------------|---------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--|
| 1                             | 2             | 3                                                       | 4                                                 | 5                                                        |  |
|                               | 275           | 9.82                                                    | 13                                                | 6.8                                                      |  |
| 2.9                           | 300           | 4.75                                                    | 4.2                                               | 1.3                                                      |  |
|                               | 325           | 17.3                                                    | 4.2                                               | 3.8                                                      |  |
|                               | 350           | 15.7                                                    | 3.8                                               | 17                                                       |  |
|                               | 375           | 4.55                                                    | 1.2                                               | 1.9                                                      |  |
|                               | 400           | 13.7                                                    | 5.2                                               | 5.3                                                      |  |
|                               | 425           | 6.1                                                     | 3.2                                               | 3.7                                                      |  |
|                               | 450           | 18.5                                                    | 1.9                                               | 4.2                                                      |  |
|                               | 250           |                                                         |                                                   | 3.1                                                      |  |
| 4                             | 275           | 24                                                      | 5.9                                               | 2.2                                                      |  |
|                               | 300           | 18.2                                                    | 5.3                                               | 3.0                                                      |  |
|                               | 325           | 32                                                      | 1.9                                               | 6.3                                                      |  |
|                               | 350           | 8.02                                                    | 1.9                                               | 2.3                                                      |  |
|                               | 375           | 5.06                                                    | 0.9                                               | 2.0                                                      |  |
|                               | 400           | 11.5                                                    | 1.2                                               | 0.9                                                      |  |
|                               | 425           | 14.3                                                    | 4.4                                               | 2.4                                                      |  |
|                               | 450           | 6.9                                                     | -                                                 | 20                                                       |  |
| 4.5                           | 275           | 31                                                      | 17                                                | 8.9                                                      |  |
|                               | 300           | 7.8                                                     | 7.8                                               | 5                                                        |  |
|                               | 325           | 4.3                                                     | 4.7                                               | 3.8                                                      |  |
|                               | 350           | 10                                                      | 6.4                                               | 13.5                                                     |  |
|                               | 375           | 4.8                                                     | 3.0                                               | 4.4                                                      |  |
|                               | 400           | 11.4                                                    | 3.5                                               | 1.2                                                      |  |
|                               | 425           | 4.2                                                     | 7.0                                               | 1.6                                                      |  |
|                               | 450           | 16                                                      | -                                                 | 8.4                                                      |  |



**Рис. S6.** (Color online) Зависимости  $R_1$  (a) и  $R_2$  (b) от температуры для образцов с толщиной 2.9 (1), 4.0 (2) и 4.5 (3) мм; зависимости  $(R_1 + R_2)$  от температуры для образцов толщиной 2.9, 4.0 и 4.5 мм (с).

**Fig. S6.** (Color online) Dependencies  $R_1$  (a) and  $R_2$  (b) on temperature for samples with the following thickness: 2.9 (1), 4.0 (2) and 4.5 (3) mm; dependencies ( $R_1 + R_2$ ) on temperature for samples with the following thickness: 2.9, 4.0 and 4.5 mm (c).

Повышение точности электрической модели может быть достигнуто за счет её преобразования [24]. С этой целью необходимо, прежде всего, исследовать ЭС на предмет поиска так называемых «несамостоятельных» элементов. Нередко за один и тот же процесс в ЭС могут отвечать несколько элементов, которые при преобразовании ЭС можно поменять на один элемент. Такими элементами в ЭС (Рис. S3 е) могут быть  $R_1$  и  $R_2$ , моделирующие в сумме сквозную проводимость образца. Это следует из Рис. S6, где приведены зависимости сопротивлений этих резисторов от температуры. Изломы на кривых связаны с несовершенством ЭС (Рис. S3 е). Вместе с тем, сумма  $R_1 + R_2$  имеет плавную зависимость от температуры (Рис. S6 с). Для исключения из схемы несамостоятельных элементов необходимо последовательную схему (Рис. S3 е) преобразовать в параллельную схему. В работе [24] показано, как преобразовать последовательную схему в параллельную и наоборот. Вначале необходимо рассчитать значения элементов параллельной схемы с помощью приближенных формул. Затем необходимо воспользоваться программой ZView, которая находит оптимальные величины параметров ЭС. Точность параллельной схемы (Рис. 2) оказалась в разы выше последовательной ЭС, что показано в Табл. S1 (столбец 4).

Следует отметить, что при повышении температуры образца могут возникнуть новые механизмы релаксации и переноса зарядов, что приведет к изменению ЭС. В настоящей работе было проведено моделирование электрических свойств образца ЭС, имеющей в своем составе элемент Геришера (Рис. 6). В Табл. S1 (столбец 5) приведены значения критерия  $\chi^2$  для этого случая. Обнаружено существенное повышение точности электрической модели при температурах 275 – 325°С. При этом ЭС (Рис. 6 а) имела на 2 элемента меньше, чем формальная схема, изображенная на Рис. 4.

| $h(h^*)(MM) / h(h^*) (mm)$ | T (°C) | $R_1(\mathbf{k}\Omega)$ | $R_{2}(k\Omega)$ | $T_{CPE} \times 10^{10}$ | P <sub>CPE</sub> | $R_{3}(\Omega)$ | <i>C</i> (pF) |
|----------------------------|--------|-------------------------|------------------|--------------------------|------------------|-----------------|---------------|
| 1                          | 2      | 3                       | 4                | 5                        | 6                | 7               | 8             |
|                            | 275    | 201(1)                  | 42.3 (9)         | 9.1 (19)                 | 0.784 (2)        | 83 (25)         | 104 (1)       |
|                            | 300    | 70.6 (0.5)              | 25.9 (6)         | 6.9 (15)                 | 0.813 (1.5)      | 63 (20)         | 105 (0.6)     |
|                            | 325    | 27.8 (0.4)              | 12.4 (8)         | 5.65 (16)                | 0.831 (1.5)      | 34 (45)         | 104 (1)       |
| 2.9                        | 350    | 12.2 (0.2)              | 10.1 (7)         | 1.24 (18)                | 0.938 (1)        | 61 (22)         | 109 (1)       |
| (2.4)                      | 375    | 5.81 (0.1)              | 6.29 (7)         | 3.69 (12)                | 0.869 (1)        | 59 (17)         | 109 (1)       |
|                            | 400    | 2.98 (0.2)              | 3.30 (38)        | 6.81 (26)                | 0.830 (2)        | 55 (62)         | 114 (7)       |
|                            | 425    | 1.62 (0.1)              | -0.37 (97)       | 8.51 (42)                | 0.840 (6)        | 813 (45)        | 68 (31)       |
|                            | 450    | 0.925(0.07)             | -3.9 (35)        | 101 (63)                 | 0.607 (9)        | 317 (6)         | 107 (4)       |
|                            | 275    | 296 (0.7)               | 43.5 (5)         | 6.59 (11)                | 0.801 (1)        | 112 (20)        | 71.3 (0.6)    |
|                            | 300    | 109 (0.5)               | 24.9 (6)         | 7.05 (13)                | 0.802 (1)        | 87 (27)         | 71.9 (0.8)    |
|                            | 325    | 44.0 (0.2)              | 14.1 (5)         | 5.74 (9)                 | 0.813 (0.8)      | 57 (28)         | 71.9 (0.7)    |
| 4                          | 350    | 19.1 (0.1)              | 12.0 (6)         | 1.64 (11)                | 0.898 (0.8)      | 75 (20)         | 74.7 (0.8)    |
| (3.5)                      | 375    | 9.22 (0.1)              | 8.61 (6)         | 3.89 (11)                | 0.847 (0.9)      | 77 (17)         | 76.5 (0.9)    |
|                            | 400    | 4.64 (0.06)             | 3.58 (10)        | 8.09 (9)                 | 0.788 (0.7)      | 0               | 71.2 (1)      |
|                            | 425    | 2.48 (0.2)              | 3 (2500)         | 33 (300)                 | 0.644 (50)       | 123 (30)        | 74 (90)       |
|                            | 450    | 1.28 (0.6)              |                  |                          |                  |                 |               |
|                            | 275    | 365 (0.8)               | 58.1 (7)         | 5.02 (15)                | 0.811 (1.7)      | 133 (27)        | 62.5 (0.9)    |
|                            | 300    | 132 (0.5)               | 31.0 (7)         | 5.81 (14)                | 0.798 (1.4)      | 93 (30)         | 62.4 (0.8)    |
|                            | 325    | 51.9 (0.2)              | 19.0 (6)         | 3.59 (10)                | 0.834 (1)        | 80 (25)         | 63.1 (0.8)    |
| 4.5                        | 350    | 22.7 (0.2)              | 16.1 (6)         | 0.94 (15)                | 0.925 (1)        | 93 (22)         | 65.6 (0.9)    |
| (4)                        | 375    | 10.6 (0.09)             | 11.6 (6)         | 2.06 (12)                | 0.878 (1)        | 101 (16)        | 67.5 (0.9)    |
|                            | 400    | 5.35 (0.07)             | 3.97 (42)        | 6.66 (10)                | 0.789 (1)        | 0               | 61.8 (7)      |
|                            | 425    | 2.94 (0,07)             | 3,07 (400)       | 4,06 (100)               | 0.800 (19)       | 48 (300)        | 64,6 (50)     |
|                            | 450    | 1.54 (0.4)              |                  |                          |                  |                 |               |

**Табл. S2.** Параметры ЭС образцов CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> различной толщины. Диапазон частот 10–106 Гц. **Table S2.** EC parameters of samples of CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> of various thicknesses. Frequency range 10–106 Hz.

## Литература/References

- 23. E. Barsoukov, J. R. Macdonald. Impedance spectroscopy: theory, experiment and application. Wiley, Interscience (2005) 606 p. <u>Crossref</u>
- 24. N. A. Sekushin. Proceedings of the Komi Science Centre Ural Branch RAS. 37, 128 (2019). (in Russian) [H. A. Секушин. Известия Коми НЦ УрО РАН. 37, 128 (2019).]
- 25. N. A. Sekushin, M. S. Koroleva. Russ. J. Electrochem. 54, 818 (2018). (in Russian) [H. A. Секушин. Элекрохимия. 54, 714 (2018).] <u>Crossref</u>
- 26. A. Lasia. Electrochemical impedance spectroscopy and its applications. New York: Springer Science+Business Media. (2014) 369 p. <u>Crossref</u>