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Ita cTaThs ABNIAETCA Hpojo/bKkeHneM Yactu 1 [1], ucnonb-
3yIOIIeil METOJ, aTOMHOT'O MOJeTMPOBaHNA C IIOTEHIVIATIOM
Tepcodda-bpennepa-Crioapra [ ONMCAHUSI MeXaHU-
YeCKMX CBOJICTB OJHOCIIONHBIX YITIEPOSHBIX HAHOTPYOOK.
Bonpmoit mMacmTabHbl 3¢ (deKT MeXaHUYeCKMX XapaKTe-
PUCTMK OOHAapy)XeH /i1 HaHOTPYOOK AMaMeTpaMU B He-
CKOJIbKO HaHOMeTpoB. CyllleCTBeHHOe pasindue CBOIICTB
HAaHOTPYOOK THIa “3uUrsar’ M “Kpecjao’ YCTaHOBJIEHO, T.e.
CIMPAIBHOCTb aTOMHOJ CTPYKTYPBbI MMeeT BaKHOE 3Hade-
Hyte. O6HapyKeH 9¢PeKT pa3HOMOAYIBHON YIPYTOCTH IIPU
PaCTsDKeHMU M CKaTuy HaHOTPYOOK. BplABieH Maciira6-
HbII1 3G PeKT HeYCTONYMBOCTY HAHOTPYOOK IIPU CHKATUM.

KiroueBble cmoBa: yIepofgHble HAHOTPYOKH, OfHOCIOMHbIE yIiIe-
POIHBIE HAHOTPYOKN, MeXaHU4ecKye CBOVICTBA, YIPYTOCTh, Mac-
wTabHbIl 9 dext, addexT pasHOMOAYIBHOCTH, CIMPATBbHOCTD,
YCTOMYMBOCTh HAHOTPYOOK

Results and discussion

In our calculations the SWCNTs [1] were subjected to
large tensile and compressive deformations. The typical
dependences of calculated force F on strain ¢ are given in
Fig. 1. The results for four nanotubes of zigzag type and one
nanotube of armchair type are given. The dependences were
calculated within the strain range -0.09<e<0.09 at various
radii r and lengths | of nanotubes and various temperatures
T. Further we shall omit a subscript zero at 1 and r, meaning
initial equilibrium values of these characteristics. The

This paper is a continuation of Part 1 [1]. Using the method
of the atomic modeling based on the Tersoft-Brenner-Stewart
potential we describe the mechanical properties of single-
walled carbon nanotubes (SWCNTs). Large scale effect
was found for the mechanical properties of nanotubes with
diameters of several nanometers. A significant difference in
the properties of nanotubes such as “zigzag” and “armchair”
is set, i.e., helicity of the atomic structure is essential. The
difference in elasticity in tension and compression of
nanotubes (bi-modulus effect) is detected. Scaling instability
effect of nanotubes in compression is identified.

Keywords: carbon nanotubes, single-walled carbon nanotubes
(SWCNTs), mechanical properties, elasticity, size effect, bi-modulus
effect, helicity, stability of nanotubes.

discontinuities and sharp bends of curves at compression (at
negative values of ¢) correspond to instabilities which will
be discussed below in more detail. The dependences F(e) in
Fig. 1 are close to a square-law to the right of the instability
point,

F(e) = ae —be?. (1)

Here the coefficients depend on nanotube radius r.
Temperature has a weak effect as compared to the radius r.
The F(e) dependence is more influenced by the temperature
than by SWCNT length 1. More detailed information is
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Table 1.

Coefficients for square-law approximation (1) of F(e) at temperature
T=300 K (radius r is given in nanometers).

Type a,nN b,nN
1 3
armchair | (1.8 1 +0.05)-10 (11.8 1 -5)10°
nanotubes .
(tension)
(20.5-r -8.6)-10°
(compression)
zigzag (1.8 1 +0.2)-10° (1.8 1 +0.2):10°
nanotubes

given in Fig. 2 and Fig. 3. The Table I shows the results of
calculations of coefficients a and b in an analytic form (1) at
temperature T=300 K.

The difference in the coefficients for various types of SW-
CNTs is essential for nanotubes of small radius r. However,
from r=4 nm and larger this difference can be neglected and
this is in line with the above discussion.

Note that the coefficient b for armchair nanotubes at com-
pression does not coincide with that at tension (the effect of
the Young moduli difference at compression and tension).

The tension force derivative with respect to strain at this
nonlinear deformation is not constant. Therefore we intro-
duce variable generalized Young’s modulus (surface stiffness)
E, that depends on deformation (besides the constant gener-
alized surface stiffness E  (see, Eq.2 [1]))

1 OF
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Some simulation results for the dependence E () are
given in Fig. 4. The results at T=10 K can be analyzed without
any ensemble averaging. The results at T=300 K require
averaging due to thermal fluctuations. The curves lose some
characteristic properties, but general features are remained
after averaging. Note that condition (1) is satisfied only
after implementation of such procedure. One remarkable
feature of the calculated curves is the essential difference
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Fig. 1. Dependences of the calculated force F on deformation ¢ for
zigzag nanotubes: 1 - r=0.242 nm, 1=6.9 nm, T=10 K; 2 - r=0.392
nm, 1=6.9 nm, T=300 K; 3 - r=0.392 nm, 1=6.9 nm, T=10 K; 4 -
r=0.698 nm, 1=6.9 nm, T=10 K; and for armchair nanotubes: 5 -
r=0.537 nm, 1=11.80 nm, T=10 K. The arrows with triangle and
rectangle points are related to the start of axil symmetric buckling
and bending instability of nanotubes, respectively.
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Fig. 2. Coefficient of quadratic approximation a at various radii r of
nanotubes: 1 - zigzag type (T=10 K); 2 - zigzag type (T=300 K);
3 - zigzag type (T=700 K); 4 — armchair type (T=10 K); 5 — armchair
type (T=300 K).
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Fig. 3. Coeflicient of quadratic approximation b at various radii r of
nanotubes: 1 - zigzag type (T=10 K); 2 - zigzag type (T=300 K);
3 - zigzag type (T=700 K); 4 - armchair type, tension (T=10 K);
5 — armchair type, compression (T=10 K); 6 — armchair type, tension
(T=300 K); 7 - armchair type, compression (T=300 K).

between cases of axial tension and compression (after
averaging even the data for high temperature deformation
of armchair nanotubes). The detailed analysis of mechanical
characteristics without averaging is rather difficult even for
low temperature at small strain e.

The generalized Young modulus E  was calculated as the
value of E (&) at zero strain. The results of calculation are given
in Fig. 5. Even though the performed calculations were not
numerous the scale effect for the considered characteristic
(i.e. E on radius of SWCNT r) is obvious. In the considered
range of small radii r the E | decreases almost by one and a
half times and takes up the constant value at r=4-5 nm (i.e.
E_=0.29 TPa'nm). Note that E | exhibits a weak tendency
to decrease with increase in temperature. The value E | is
also influenced by the type of SWCNT (determined by
chirality). The value E for zigzag nanotubes exceeds its
value for armchair nanotubes. No considerable influence of
the nanotube length on the modulus E  was observed in our
study.

As long as the obtained mechanical response was
nonlinear the nonlinear behavior of the Poisson’s ratio was
also studied. This was done for 20 and at ¢—>0, i.e. v(¢)
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Fig. 4. Dependences of generalized Youngs modulus E  on
deformation e: 1 — armchair nanotube with 1=9.41 nm, r=0.4 nm (T=
10 K); 2 - zigzag nanotube with 1=11.5 nm, r=0.47 nm (T=10 K);
3 - zigzag nanotube ¢ I=11.5 nm, r=0.47 nm (T=300 K); 4 - armchair
nanotube with 1=9.41 nm, r=0.4 nm (T=300 K).
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Fig. 5. Dependences of generalized Young’s modulus E j on SWCNT
radius r: 1 - 1=18.6 nm, T=10 K (zigzag nanotube); 2 - 1=6.9 nm,
T=10K (zigzag nanotube); 3 - 1=6.9 nm, T=300 K (zigzag nanotube);
4 - 1=6.9 nm, T=750 K (zigzag nanotube); 5 - 1=11.8 nm, T=10 K
(armchair nanotube); 6 - 1=11.8 nm, T=300 K (armchair nanotube).

and v,=v (e=0). The simulation results for Poisson’s ratio v
vs. strain € are given in Fig. 6. There are three simulations
at T=10 K and one at T=300 K. The temperature increase
did not affect v(e) and v, considerably, but noticeably
hampered the calculation due to thermal fluctuation,
although in general v(¢) was the same after the averaging.
A considerable distinction between v(e) for armchair and
zigzag nanotubes is observed. There is a sharp maximum of
v(¢) for the armchair nanotubes at €=0 (it is hard to calculate
v, accurately at high temperatures). The dependence of v(e)
form on the ratio l/r (we show below that it is a parameter
which adjusts the instability type) was not revealed. Different
behavior was observed for zigzag nanotubes. Poisson’s
ratio remains constant v=0.3 at compression and does not
depend on deformation for 1/r<22. Ratio l/r is a parameter
corresponding to the type of loss of stability - either related
to the axisymmetric bucling or buckling of an intermediate
type. Such Poisson’s ratio behavior does not occur at 1/r>22.
At SWCNTs tension Poisson’s ratio v quickly decreases with
growth of strain.

The dependence of the Poisson’s ratio v, vs. r is given in
Fig. 7 at zero strain. It is seen that v (r) varies for SWCNTs
with small radius, but it is practically constant starting from
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Fig. 6. Dependences of Poisson’s ratio v on deformation & at
temperature T=10 K: 1 - r=0.603 nm, 1=8.2 nm, armchair nanotube;
2 - r=0.698 nm, 1=7 nm, zigzag nanotube; 3 - r=0.392 nm, 1=1
0.3 nm, zigzag nanotube; 4 — results of calculations for T=300 K:

r=0.392 nm, 1=10.3 nm, zigzag nanotube.
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Fig. 7. Dependences of Poisson’s ratio v, at zero strain from radius r
of zigzag (1) and armchair (2) nanotubes.

Fig. 8. Types of loss of stability: 1 — axisymmetric buckling 1/r<17;
2 - buckling of an intermediate type, 22>1/r>17; 3 - rod-like
bucking, 1/r>22.

r=4-5 nm. For armchair nanotubes the results are given only
for T=10 K (thermal fluctuations and the singularity of curve
v(e) gives no possibility to study v (r) at high temperatures).
However, for zigzag nanotubes v (r) does not depend on
temperature considerably (that is surely after averaging) and
we can expect that the temperature should not influence
v,(r) for armchair nanotubes also. What we can say with
confidence is that v (r) depends on SWCNT type. No
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Fig. 9. Critical deformation at compression ¢_ vs. radius of zigzag
nanotubes r: 1 - 1=6.9 nm (T=10 K); 2 - 1=8.2 nm (T=10 K); 3 -
1=10.7 nm (T=10 K) (at I/r>21 the data is marked by “short dots”);
4 - 1=18.6 nm (T=10 K) (at 1/r>21 the data is marked by “dots”);
5-1=6.9 nm (T=300 K); 6 - 1=16.6 nm (T=300 K) (atl/r>21 the data
is marked by “dash dot dot”). For the deformation at 1/r<17 all the
data are combined into a single curve independent on length 1, but
depending on temperature. The solid curve corresponds to T=10 K
and the dashed curve is for T=300 K.
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Fig. 10. Critical deformation at compression ¢_ vs nanotube radius
r for different armchair nanotubes: 1 — 1=8.2 nm, 2 - 1=11.8 nm,
3 -1=16.2 nm.

variation of v, on SWCNT length 1 was observed. Note that
there is a similar scale effect for the Poisson’s ratio v, and E |
though their change is inverse (e.g. Fig.5 and Fig.7).

Three basic types of loss of stability have been revealed
in numerical modeling of SWCNT axial compression. These
three forms of loss of stability are given in Fig. 8. Realization
of these forms is defined by SWCNT geometric characteris-
tics. The axisymmetric buckling type of axial loss of stability
was observed for 1/r<17 that corresponds to break of F(¢) in
Fig.1. The rod-like buckling occurs at 1/r>22. There is a sharp
bend of F(¢) curve in such case. If the intermediate condition
22>1/r>17 is fulfilled for the SWCNT geometry then it shows
buckling of the intermediate type (also with a break on F(e)
curve in Fig. 1). The dependence of buckling critical strain ¢_
at axial compression on geometric parameters of SWCNT is
quite complicated. The results of simulations of the depen-
dence for zigzag and armchair nanotubes are given in Fig. 9
and Fig.10. The nonmonotone character of ¢_(r) is due to the
variety of the loss of stability types described above.

Conclusions

It has been shown that the classic elasticity theory cannot
be applied to SWCNTs and to thin-walled MWCNTs.
The molecular dynamics simulation of uniaxial tension
(compression) of SWCNTs was performed using the
Tersoff-Brenner-Stuart potential. The nanotubes mechanical
characteristics (generalized Young’s modulus and Poisson’s
ratio) were obtained without using concepts of the classical
elasticity theory. Our simulations establish a link between
these generalized characteristics, value of deformation and
nanotubes diameters. It was shown that the scale effect
vanishes for nanotubes of large diameters. The dependence
of the generalized modulus E_ on axial tensile deformation
is linear.

This modulus (and Poisson’s ratio) is also affected by
the nanotube chirality. Different moduli in tension and
compression were found for armchair nanotubes (“bi-
modulus effect”). Three types of SWCNTs loss of stability at
axial compression were identified.

Thus, using the generalized mechanical characteristics
that are calculated using the energetic approach along with
the geometric and structural parameters, one can describe
the mechanical response of carbon nanotubes at the atomic
scale. The generalized characteristics in the case of thick-
walled MWCNTs will tend to macroscopic characteristics
of elasticity as the considered scales are increased over the
atomic scale.

The molecular dynamics modeling procedure using the
Tersoff-Brenner-Stuart potential that was used in the present
study is initially suitable for hydrocarbons modeling so a
further development of the performed analysis is possible
for the case of CNT-polymer composites considering various
temperatures and regimes.

V.A. Gorodtsov thanks Dr. D.S. Lisovenko for the help in
preparing this article.
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