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In many publications the classical theory of elasticity is
used to describe the mechanical properties of nanotubes.
However, necessary conditions for applicability of the
theory of elasticity are not fulfilled in the case of single-
walled carbon nanotubes (SWCNTs) and tubes with a
small number of atomic layers in their walls. Therefore,
in the first part of this article, we introduce the method
of molecular dynamics and general energy analysis for
the description of the generalized Young’s modulus (with
the dimension of the surface stiffness) and Poisson’s ratio
characterizing the uniaxial tension of SWCNTs. The strong
dependence of the generalized characteristics of the studied
nanoscales is their distinctive feature (size effect) which is
in contrast to the similar concepts of the elasticity theory.

Here in Part 1 we discussed features of the basic approach
and the semi-empirical Tersoff-Brenner-Stewart potential
used in the present study. The main findings will be presented
in Part 2.

Keywords: carbon nanotubes, mechanical properties, elasticity, size
effect, Yakobson's paraox, molecular dynamic, Tersoff-Brenner-
Stuart potential.

Introduction

Nanotubes, including carbon and non-carbon nanotubes,
have already been intensively studied for almost two decades
(the starting articles [1,2]). It is common that the description

HPI/I ONMCAaHUM MeXaHUYEeCKUX CBOWCTB HaHOTPY6OK BO
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€M METO[ MO}ICKY}IHPHOI/UI OVMHAMUKN U 06mer0 SHEPreTm-
9YecKOro aHaM3a JIA ONMCaHMA OOOOIIEHHOTO MORYIA
IOHra (¢ pasMepHOCTBIO IIOBEPXHOCTHON >KECTKOCTM) I
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B OT/INYME OT aHAJIOTUYHBIX TOHATUI TeOpuM ynpyrocTiu.
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CTBa, YIIPYrocTh, MaclTabHblil addexT, mapagoxc SJxob6coHa, Mo-
JeKy/sIpHasl AuHaMMKa, noteHuuan Tepcodda-bpenunepa-Croap-
Ta.

of nanotubes mechanical properties is based on macroscopic
ideas. Basic concepts (like Young’s modulus, Poisson’s ratio
etc.) are borrowed from the classic elasticity theory without
sufficient basis. The molecular modeling methods bring
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the understanding of the role of discrete atomic structures.
However, in this case the concepts of the elasticity theory are
also needed for the results interpretation.

By now a lot of literary data on experimental studies of
SWCNTs elastic properties (along with various methods
of measurement) are available [3-43]. In the field of
theoretical predictions of SWCNTs elastic properties there
is even more progress [44-51]. The results of these studies
are essentially varied from one researcher to another (by
more than an order of magnitude for Young’s modulus).
This scatter is known as “Yakobson’s paradox” [52]. Along
with inaccuracies of the experimental measurements, the
experimental and theoretical researches clash with difficulties
of the interpretations of results. The concepts of continuum
mechanics and classic elasticity theory are usually used
even for interpretation of molecular-dynamics simulations.
However, the necessary conditions of continuum mechanics
applicability are often violated. Namely the violation of the
superiority of object size L over the atomic and interatomic
scale a (i.e. L>>a) is observed. In present work for the further
estimates this strong inequality will be replaced with the
specific inequality L>>10a providing accuracy in one order
of magnitude.

Nanotubes are such long objects so that this inequality is
tulfilled practically always. Moreover, the length of nanotubes
can reach millimeters, i.e. length can be of a macroscopic
value. The condition on nanotubes circumferential dimension
is also not essentially restrictive. For carbon nanotubes
the interatomic distance in graphene plane is the length
of a covalent C-C bond 0.142 nm. Then the continuum
approximation is possible for nanotubes with inner diameter
more than 10a/n=0.45 nm. The smallest known diameter
of a synthesized SWCNT is 0.33 nm [53] and the smallest
internal diameter of MWCNT is 0.3 nm [54]. Therefore large
number of nanotubes satisfies the discussed condition for
the circumferential perimeter of nanotubes. However, there
is another cross-section direction of nanotubes, namely
their thickness direction. The scale restriction h>10a can be
carried out only for thick MWCNT. This inequality states the
number of layers not less than ten. In this case the distance
between graphene layers equals a=0.34 nm. Therefore the
critical thickness of a wall is about h=3.5 nm, and then for the
minimal external diameter of nanotubes we have an estimate
D, =7.5 nm. For MWCNT of smaller diameters the influence
of discrete atomic structure on mechanical properties (scale
effect) can be expected. In case of SWCNTs the concept of
thickness is generally ill-determined. Note, that it occurs
periodic alternation of atoms and “empty” places in the
graphene layer from which the nanotube is formed. Hence,
the clear physical sense of fixing any thickness of this layer
is absent.

The problem of carbon nanotube thickness and
Young’s modulus determination (both problems are closely
connected) were repeatedly discussed in the scientific
literature [55-61]. On the basis of these discussions one
can conclude that introduction of the concept of thickness
is not necessary for thin-walled nanotubes mechanical
properties description. There are deformation characteristics
of nanotubes which are still well-determinable at discrete
atomic simulation as well as at continuum approximation,

i.e. the energy of deformation and its derivatives on strain
OW/0e, *'W/0¢e?, ... . The first derivative of W at nanotube
axial tension - compression defines the force (l- initial
nanotube length)
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For infinitesimal strain (e—0) the second derivative of W
gives an important mechanical characteristic which can be
called «generalized Young’s modulus» or a surface stiffness
(with dimensionality Pa-m=10" TPa-nm)
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Here S - the area of a nanotube surface, r - its radius. This
characteristic was used in several studies [55-61]. It is
suitable for the description of MWCNTs as well as for
SWCNTs. However, only for the MWCNTs with sufficiently
large diameter (D >10 nm) the necessary scale inequalities
are realized for all directions. MWCNT is like a single
crystal graphite locally. Then the conditions of classical
elasticity theory concepts applicability are fulfilled and
the sense of nanotube thickness is clear. In this case the
surface stiffness becomes the traditional in-plane stiffness
proportional to Young’s modulus multiplied by thickness of
a nanotube E ~Eh. The thickness of a nanotube h is equal
to N-a=N-0.35 nm, where N is number of layers and a is the
distance between the graphene plates for graphite. At the
same time the determination of Young’s modulus is incorrect
for SWCNTs because of the indefiniteness of thickness h. At
first sight it seems possible to calculate independently the
thickness h and Young’s modulus computing other elastic
characteristics (e.g., bending or torsion stiffness). However,
this formal method gives the non-physical results for
SWCNTs [60].

For SWCNTs one can calculate Poisson’s ratio. This is
possible because the length and circumferential perimeter
of a nanotube are “macroscopic” well-determined quantities.
Such generalized ratio can be calculated by the ratio of
a relative change of nanotube circumferential size to the
relative change of nanotube length

As/s, Arlry, r-r,
v=-— =- = . 3)
Al/1, Al/l,  er,

Thereby Poisson’s ratio can be used for nanotube
mechanical properties description together with generalized
Young’s modulus. However, if the inequality r >>Ar>>a is not
satisfied then the scale effect for Poisson’s ratio is possible. In
the classic elasticity theory Poisson’s ratio is a constant.

In the elasticity theory any elastic characteristic of
isotropic medium is defined through only two independent
values, for instance by Young’s modulus and Poisson’s ratio.
For nanotubes with large diameter two similar generalized
characteristics reduce to these elastic constants as it is clear
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from what is written above. But in the case of SWCNTs
such limiting transition is productive only for Poisson’s
ratio. For nanotubes of small diameters the discussed
generalized characteristics depend on diameter (size effect),
and the mechanical properties are not defined by these two
parameters. The geometric parameters (inclusive of chirality)
are essential for full description. Later on we will show the
effect of a difference of Youngs moduli for SWCNTs at
tension and compression.

The molecular dynamics calculations in this work are
based on the Tersoff-Brenner-Stuart potential [62,63]. The
subjects of simulations are the mechanical properties of
SWCNTs under tension and compression. This standard
method (including the effects for nonzero temperatures and
the remarks on some restrictions for the description of the
large deformations) is briefly written in the next section. In
Part 2 the basic results obtained by numerical calculations
are given. The kind of the nonlinear mechanical response
to tension (or compression) of SWCNTT5 is established. The
dependences of generalized Young’s modulus and Poisson’s
ratio on magnitude and sign of strain are found. The influence
of geometric parameters on mechanical characteristics is
also analyzed. The boundaries of scale effect are estimated.
The boundaries of instability and existence of various stable
forms of nanotubes are established for axial compression.

Modeling of atomic interactions in SWCNTs

We use the standard molecular dynamics methods. The
equations of motion are integrated in time for a system of
carbon atoms with interatomic forces defined by the Tersoft-
Brenner-Stuart interatomic potential (named also AIREBO
potential) developed for a system of carbon and/or hydrogen
atoms [62]. The considered potential consists of three parts:

W=%ZZ WE+WHE Y WL @

i g ki 1, j, k

The W.* term has the same functional form as the
hydrocarbon REBO potential developed by Brenner [63].
This term in the AIREBO potential gives the model of
its reactive capabilities and describes only short-range
interactions (distance between atoms dij is less than
cutoff radius d_ =0.2 nm). These interactions have strong
coordination-dependence through a bond order parameter,
which adjusts the attraction between the i, j atoms based on
the position of other nearby atoms and thus has 3- and 4-body
dependence. The W, " term adds long-range interactions
(0.2 nm<dij<1.02 nm) using a form similar to the standard
Lennard-Jones potential. The W, " term is an explicit 4-body
potential that describes various dihedral angle preferences in
hydrocarbon configurations. It is known that such potential
correctly reproduces energy of various structures of carbon
and hydrocarbon compounds (in particular, suitable for
simulation of carbon nanotubes). This potential is convenient
for modeling the nanotube-polymer composite.

It is important to consider some restrictions of
applicability of discussed model. For the Brenner potential
(and related potentials) a nonphysical effect may appear at

high deformations. For instance, the effect of overestimation
of critical stresses at tension may be observed [64]. This effect
is associated with a dramatic increase in the interatomic force
near dij=dcm (aso-called camelback on the force curve), which
rises sharply with peak strain. This strange feature is a result
of cutoff function action in the interatomic potential. The
cutoff function f(dij) is introduced in previously mentioned
W,* term for taking into account only the nearest neighbors
in covalent bonds. This function is constructed from three
parts: f(dij)=1 at 0<dij<0'17 nm; f(dij)=0.5+0.5cos(Adij—B) at
0.17 nm<dij<0.2 nm, f(dij)=0 at dij>0.2 nm (constants A and
B ensure f(dij) is continuously differentiable function). As a
result the second derivative of the potential curve has a kink
at d,=0.17 nm. There are complications for the description
of situations when two originally close atoms were separated
on distances over 0.17 nm. This artificial feature gives the
imaginary effect of strong hardening of nanotube before its
rupture. One of possible ways for solving this problem is
to increase the zone where cutoff function equals to unity
f(dij)=1. But for this work the high strain of tubes was not
considered. In our calculations it was found that the distance
between closest neighboring atoms does not exceed 0.17 nm
at £<0.16. In this work the strain ¢ did not exceed 0.10.

Calculations were carried out at various geometric
parameters of SWCNTs (6 nm<] <18.6 nm and 0.4 nm<r <4
nm) and temperatures (T=10 K, 300 K and 750 K). The
specific temperature was set by a Langevin thermostat [65].
Calculations at temperature T=10 K were carried out for the
sake of methodological purposes.

Calculations of nanotubes mechanical properties are
frequently performed without accounting for a temperature
effect. In such simplified calculations one can avoid many
difficulties (for instance thermal fluctuations), however,
ignoring such factor is not always valid. Thus we have also
performed verification of athermal methods by comparing
the calculations at low temperatures with calculations at high
temperatures. Later on it is shown that some characteristics
can be defined only as the thermodynamic quantities (it
results in some subtleties in calculation of their values). The
number of atoms of SWCNTs in calculations varied from
360 up to 31680. The time step during integration of atomic
motion equations was At=0.001 ps. All of the calculations
were carried out using the LAMMPS program [66].

During the molecular dynamics simulation, compression
and tension were applied as follows: one atomic layer (the
ring) at the edge section of SWCNT was “frozen”, and one
atomic layer at the opposite edge was given the constant
speed v which provides either compression or tension
of the nanotube. Calculations have been carried out to
estimate the values of speed v corresponding to quasi-
equilibrium deformation. It was obtained that the calculated
characteristics of SWCNTs do not depend on v for v<0.01
nm/ps. In the subsequent calculations the magnitude of v
was chosen equal to 0.001 nm/ps. The dependences of force
F(e) and Poisson’s ratio v(e) were computed using (1) and (3).
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