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Rotational-type mesodefects  — strain induced junction disclinations, are formed at joints and ledges of high-angle grain 
boundaries during plastic deformation of polycrystals. The strength of these mesodefects increases with deformation and, 
as a result, they create non-uniform elastic stress fields, which significantly affect the processes of structure formation, strain 
hardening and material’s fracture. In the present work, the interaction of a slip band propagating in a grain body under 
the action of an external stress field with an elastic field of wedge disclination is investigated by the discrete dislocation 
dynamics simulation method. The simulation results show that the behavior of the front of the band has common regularities.  
For a given distance between the slip band and the disclination y0, the behavior of the dislocation cluster in the front of the 
band essentially depends on the distance between the slip planes of the dislocations h. For small h, it is similar to the behavior 
of a dislocation pile-up. However, the maximum density of dislocations occurs not in the head of the cluster, as in the classical 
blocked dislocation pile-up, but in its central part. An increase in the distance h between dislocations slip planes leads to a 
“splitting” of the front of the band. For larger h the front of the band transforms into a broken from both sides dislocation 
wall. The minimal distance hc, above which such dislocation wall is formed, depends on the disclination strength ω0 and 
the distance y0. The maximal misorientation of the wall is equal to the disclination strength ω0 at y0 = 0. With an increase in 
the external stress, the wall overcomes the force barrier of the disclination and moves as a whole to the lateral surface of the 
crystal. Multiple reiteration of this process leads to the possible appearance of the system of broken from both sides dislocation 
walls in the body of grain.

Keywords: computer simulation, slip band, disclination.

1. Introduction

It is known that during plastic deformation of polycrystalline 
solids, rotational-type mesodefects  — strain induced 
junction disclinations  — are formed at the joints and 
ledges of high-angle grain boundaries [1– 3]. The strength 
of these mesodefects increases during deformation, as a 
result of which they create non-utiform elastic stress fields 
that significantly affect the processes of structure formation, 
strain hardening, and fracture of materials. A consistent 
approach to constructing theoretical models of the 
mechanical behavior of a material under large deformations 
is to consider the regularities and features of the behavior 
of dislocations and dislocation ensembles in stress fields of 
mesodefects that evolve during deformation. Within the 
framework of this approach, it was shown in [4 – 7] that near 
strain induced junction disclinations in the volume of grains 
mesoscopic regions appear, characterized by a high density 
of the dislocation charge, in which well-defined broken 
dislocation boundaries emanating from the joints in the 
grain body are formed. Existing theoretical models provide 
good explanation of the reliably established experimental 
fact that at the initial stages of polycrystal fragmentation 
(for characteristic values of strain ε ≥ 0.2), strain induced 

broken boundaries are formed near joints and ledges of 
grain boundaries [1, 8, 9]. An analysis of the contribution of 
junction disclinations to the strain hardening of polycrystals 
was carried out in a number of theoretical works [10 –12]. 
In [10], the analysis was carried out in the continuum 
approximation using a system of balance equations for 
dislocations in the volume of the grain and disclinations 
at the joints of strain induced fragments. It was shown that 
the disclination model describes well the fourth stage of 
strain hardening of polycrystals. In [11,12], the contribution 
of junction disclinations to the deforming stress was 
estimated using the method of discrete dislocation dynamics 
simulations [13].

The conditions for the passage of pile-up of lattice 
dislocations through the force barrier created by junction 
disclination were studied, and the dependences of the 
deforming stress on the disclination strength and the 
parameters characterizing the accumulation of dislocations 
were calculated. The conditions for the nucleation of cracks 
in elastic fields of junction disclinations were considered 
in [14 –18]. The influence of the elastic field of junction 
disclination on the nucleation of microcracks in the head 
of a pile-up of lattice dislocations retarded near the grain 
boundary was considered in [11].
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In the present work, in the framework of the discrete 
approach, the interaction of dislocations with the elastic field 
of a wedge disclination in the practically important case of 
localization of deformation in the grain body in the form of 
slip bands, was considered.

2. Model Description

Let us consider the interaction of a plastic shear localized in 
a slip band of width H with a wedge disclination of strength 
ω located at the center of the lower boundary of the model 
grain (Fig.  1). Let the plastic deformation in the band be 
carried out by the movement of edge dislocations in the field 
of external stresses σext, in slip planes spaced apart by the same 
distance h (Fig. 1). In this case, the plastic shear front can 
be described as clusters of N = H / h dislocations distributed 
over the width of the band. Let us analyze the behavior of 
such a cluster during the passage of the band through the 
elastic field of the junction disclination using the method of 
discrete dislocation dynamics simulations [13].

The equation of motion of the k dislocation with the 
Burgers vector b of the cluster (the coordinate system is 
shown in Fig. 1) in the slip plane, which is separated from the 
disclination by the distance yk = y0 + h(k −1), k =1, 2,…, N, in 
the quasi-viscous approximation has the form [12]:
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(where: 1≤ i ≤ N −1), D = G / 2π (1−ν), G is the shear modulus, 
ν is the Poisson’s ratio. As can be seen from Eq.  (3), the 
force acting in the slip plane on the k dislocation from the 

disclination is positive in the crystal region to the left of the 
disclination (xk < 0) and negative to the right of it (xk > 0) 
(Fig. 1). Wherein, in the area to the left of the disclination 
the force σxy

extb  acting on the dislocation from the external 
stresses coincides in direction with the force acting on it from 
the disclination, and in the area to the right of disclination 
these forces are directed opposite to each other. Thus, in 
the region xk > 0, the moving dislocation is inhibited by the 
disclination field.

It is not difficult to see that a steady state of equilibrium of 
a single dislocation is possible only if the condition σext < σc

* 
is satisfied, where � �c D* � 2 is the maximum shear stress 
from disclination achieved on the beam conducted through 
the disclination at an angle φ = 45° (Fig. 1). Accordingly, the 
condition of the passage of the plastic shear, realized by the 
movement of a single dislocation, through the force barrier 
created by the disclination, has the form: σext ≥ σc

*. To take 
into account dry friction when simulating the motion of a 
dislocation cluster, it was assumed that there is a threshold 
stress of dislocation start σth. When σ∑xy ≤ σth, the dislocation 
velocity was equal to zero. The calculations were carried 
out at �th D� ������ . The calculated region of the crystal 
was selected in the form of a rectangle with dimensions of 
10 × 3 μm.

The calculation of the equilibrium configuration of the 
cluster in the case when the magnitude of the external stress 
field is insufficient for the cluster to overcome the disclination 
force barrier was carried out by the method of successive 
iterations in time. The cluster of dislocations was formed by 
successive generation of dislocations from the left boundary 
of the grain, with each subsequent n dislocation starting in 
the slip plane yn = yn−1+ h. In order to exclude the influence 
of dynamic effects [20 – 22], each subsequent dislocation was 
emitted only after equilibrium was established in a cluster 
consisting of previously emitted dislocations.

The equilibrium position of dislocations in the cluster 
formed after the generation of each new dislocation was found 
as follows. With a given initial time step, the coordinates of 
the cluster dislocations xi were determined at which the total 
stress acting on each of them turned out to be less than or 
equal to the threshold stress of dislocation start σth. Then this 
procedure was repeated with a smaller time step and new 
coordinates of dislocations xi' were determined. The time step 
Δt decreased until the coordinate changes Δxi = xi − xi' of each 
i-th cluster dislocation became of the order of magnitude of 
the Burgers vector of the dislocations (~2.5 ∙10−4 μm). Such 
a calculation method allows one to determine with good 
accuracy the stable equilibrium position of the system under 
consideration.

3. Results of computer simulation

As the simulation results show, in the behavior of the band 
front as it passes through the disclination elastic field, 
general regularities are observed. For a given distance 
between the slip band and disclination y0, the behavior of 
the cluster essentially depends on the distance h between the 
slip planes of the dislocations. Fig. 2 shows the equilibrium 
configurations of dislocation cluster retarded by the wedge 
disclination of strength ω = 0.04 in the slip band located at a 

Fig. 1. Schematic plot of the slip geometry of dislocations in the 
band. The wedge disclination is located in the center of the lower 
grain boundary.
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distance y0 = 0.5 µm at h = 20b (Fig. 2 a) and h = 50b (Fig. 2 b) 
and σext = 0.01D.

For h = 20b (Fig. 2 a), the behavior of the cluster is similar 
to the behavior of a dislocation pile-up, considered in [12].  
It is noteworthy that the highest dislocation density does not 
arise in the cluster head, as in the classical dislocation pile-up 
inhibited near the barriers [23], but in its central part (Fig. 2 a). 
An increase in the distance h between the slip planes of the 
dislocations leads to a “splitting” of the initial front of the 
band (Fig. 2 b). At large h, the accumulation of dislocations in 
the front of the band is rearranged into a configuration that 
is a dislocation wall broken from both sides. The equilibrium 
configuration of cluster dislocations at h = 75b, σext = 0.01D, 
y0 = 0.5 μm, ω = 0.04, N =15 is shown in Fig. 3 d.

In addition to the “quasistatic” method of forming 
an equilibrium cluster described above, the case was also 
considered closer to reality when the cluster was formed 
first at an obstacle (fixed head dislocation) in the absence 
of a disclination field, and then moved as a whole from 
the left boundary of the computational domain under the 

action of an external stress field towards the disclination.  
The analysis shows that when a certain minimum distance 
hc is exceeded and when external stresses are not too large, 
an equilibrium wall of dislocations broken from two sides 
also forms near the disclination. Fig. 3 shows the successive 
stages of transformation of the thus formed front of the band 
at σext = 0.01D, y0 = 0.5 μm, ω = 0.04, N =15 for the dislocation 
mobility М =1.5 ∙106D−1s−1. In this case, the final configuration 
of the wall turned out to be the same as that formed during 
the “quasistatic” method of its formation. The analysis shows 
that the minimum distance hc, beyond which a dislocation 
wall broken from both sides is formed, depends on the 
disclination strength ω0 and the distance y0 from the slip band 
to the disclination.

Fig. 4 shows the dependence of the misorientation of the 
forming wall ω = b / h normalized to the disclination power ω0. 
Note that at y0 = 0, dislocation walls may be formed formed 
with the maximum possible misorientation ωmax = ω0.

With a gradual increase in the external stress σext > 0.01D, 
the equilibrium cluster configurations (Fig.  2 a, b, Fig.  3 d) 

			        a							               b
Fig.  2. Equilibrium configurations of dislocation in the front of the band at h = 20b (а) and h = 50b (b). (σext = 0.01D, y0 = 0.5 μm, ω = 0.04, N =15).

			        a							               b

			         c							              d
Fig. 3. The successive stages of transformation of the slip band front into the broken dislocation wall at h = 75b: t = 0.1 s (a), t = 0.2 s (b), 
t = 0.3 s (c), t =1.5 s (d). (σext = 0.01D, y0 = 0.5 μm, ω = 0.04, N =15, М =1.5 ∙106D−1s−1).
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formed at the parameters h and y0 considered above move 
to the right, while their equilibrium configuration retains 
as a whole its similarity. When the external stress reaches a 
value greater than a certain critical value (� �ext

c� ), clusters 
lose their stability. So, for the case shown in Fig.  2 a, when 
� �ext

c D� � ����� , the head dislocation “breaks away” 
from the cluster with its subsequent movement and sink on 
the right side surface of the crystal. For the case of a “split” 
front of the band (Fig.  2 b) with σext ≥ 0.012D, such process 
occurs for the dislocation of the cluster that is most distant 
from the disclination. Finally, in the case when a broken wall 
of dislocations is formed (Fig. 3d), it overcomes the force 
barrier of disclination at � �ext

c D� � ����*  and moves to the 
right side surface of the crystal.

Note that, due to the cylindrical symmetry of the elastic 
disclination field, such walls can be formed with an arbitrary 
orientation of the slip band relative to the crystal lattice of the 
grain. Therefore, in the general case, a situation is possible 
when the front of the slip band passes through the force 
disclination barrier in the grain body, it is possible that not 
one dislocation wall broken from both sides appears, but 
systems of such broken dislocation boundaries with the same 
charge parallel to each other.

The critical stress of plastic shear in the case of wall 
formation reaches a maximum value and coincides with the 
stress for passage of a single dislocation. Thus, the behavior of 

the dislocation wall broken from both sides is similar to the  
behavior of a superdislocation with a Burgers vector B =bN 
and, therefore, the stress necessary for its passage through 
the disclination force barrier does not depend on the distance 
between the slip band and the disclination.

Thus, the model predicts the formation of specific 
dislocation structures near the junction disclinations in the 
form of distributed clusters or dislocation walls broken from 
both sides. It should be noted that these structures do not 
disappear when the external load is removed, but relax to 
new equilibrium configurations, retaining as a whole their 
similarity. As an illustration of it, Fig.  5 shows the result of 
the transformation of the structures shown in Fig.  2, after 
removing the external load. Note that in the case of the 
formation of the wall, its configuration remains unchanged 
after removing the external load.

4. Conclusions

1.	 The interaction of the front of the slip band with the 
elastic field of the wedge disclination is considered. It is 
shown that in the process of passing of a plastic shear through 
the force barrier of the disclination, both the “splitting” of 
the front of the band and formation of the broken from 
both sides dislocation wall is possible. The conditions 
necessary for the formation of broken dislocation walls 
are determined. It was shown that the maximum possible 
misorientation of such dislocation boundaries depends on 
the disclination power and the distance between the slip 
band and the disclination.

2.	 Junction disclinations under conditions of the plastic 
flow localization in the form of slip bands can act as a 
“generators” of systems of broken from two sides dislocation 
boundaries parallel to one another.
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