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Ultrasonic treatment (UST) of metals is based on the exciting of resonant high-frequency vibrations to induce oscillating elastic 
stresses in the bulk of materials, which result in the generation, motion and rearrangement of crystal lattice defects. Normally, 
the resonant vibrations are obtained by using cylindrical samples or ultrasonic instruments having the length equal to the 
half-wavelength of ultrasound. In such waveguides, however, the distribution of the stress amplitude is not uniform along 
their axis. Accordingly, changes in the structure and properties due to the UST are different along the sample. Here, a new 
type of ultrasonic waveguide based on the Gaussian (ampulla) horn is proposed and called a double-Gaussian waveguide. It is 
composed of two identical high-amplitude parts of a Gaussian waveguide joined at a node that allows one to achieve a uniform 
distribution of the amplitude of normal stresses in a significant region with a length equal to that of a doubled Gaussian region. 
Analytic results obtained by Eisner are used to calculate geometrical characteristics of the waveguide and the latter are refined 
by finite element modeling. Characteristics of double-Gaussian waveguides made of steel 45 and titanium alloy VT6 (Russian 
grades) are calculated. This type of waveguide can be used in the bulk ultrasonic treatment of materials to expose the samples 
to oscillating stresses of an equal amplitude.
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1. Introduction

One of the methods used to modify the structure and 
properties of metals is the ultrasonic treatment (UST), 
during which oscillating tension-compression stresses are 
excited in the bulk of a sample of material [1– 4]. A number 
of studies have shown that during the bulk UST, depending 
on the amplitude of the wave, either a relaxation of a 
preliminarily deformed structure and related internal stresses 
occurs [2, 5] or dislocations are intensively generated and the 
substructure is formed [1, 6, 7]. Of a particular interest is the 
application of UST to metals and alloys with an ultrafine 
grained structure processed by severe plastic deformation. 
These materials commonly have a highly nonequilibrium 
structure caused by the defects accumulated during severe 
deformation and are often characterized by lowered thermal 
stability of microstructure, reduced ductility and impact 
toughness [8 –10]. Recent studies on the influence of UST on 
these materials discovered a number of effects related to the 
relaxation of their highly nonequilibrium structure such as 
the reduction of internal stresses, refinement of the structure 
of grain boundaries, enhancement of the thermal stability 
of the microstructure, of ductility and impact toughness 
without a loss of the strength etc. [11–16].

For bulk UST, one needs to excite resonant elastic 
vibrations in the samples. Normally this is done by using 
cylindric samples with the length equal to the half-wave 
length of an oscillating system [5 – 7,13]. Then a standing wave 
is formed in the sample during UST, in which the amplitude 
of the normal stresses is distributed according to the relation
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where E is the Young’s modulus of the material, um the 
displacement amplitude at the end of the sample, x the 
coordinate along the sample axis and λ the wave length.

A disadvantage of this shape of the samples is that 
during the UST the stress amplitude is not uniform along 
the waveguide. Accordingly, changes in the structure and 
properties due to UST are different along the sample. In some 
cases, this makes a convenience, since allows one to study 
the effect of ultrasound in a wide range of stress amplitudes 
using a single half-wave sample. For example, using such 
samples the amplitude dependence of the dislocation density 
in sonicated metals [1] and of the strength and ductility of 
ultrafine grained nickel processed by equal-channel angular 
pressing (ECAP) followed by UST [13] were studied.  
In general, however, this disadvantage restricts a researcher 
in the choice of sample lengths and test methods for further 
studies. For example, in order to carry out rigorous tests 
of mechanical properties one needs samples in which the 
quantitative characteristics of any external influences would 
be the same on their whole gauge length. Choosing a specific 
shape of a waveguide for which the stress amplitude would be 
the same over its significant part one would expand the zone 
of a uniform action of the ultrasound of a given intensity and 
obtain samples of large sizes for the studies of mechanical 
properties.

Such a waveguide can be developed basing on the ampulla 
horn in the Gaussian region of which the amplitude of strain 
and stress are constant [17]. The idea is to join the high-
amplitude part of the horn to its “mirror-image” instead of 
the low-amplitude part that will result in a waveguide with the 
double length of the Gaussian region. Such a waveguide will 
act not as a concentrator of displacements but will provide a 
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uniform distribution of the normal stress amplitude over the 
significant part of its length.

In the present work we report on the calculations of 
geometrical parameters of such double-Gaussian waveguide 
and the results of its simulations using finite-elements 
method by means of the code ANSYS Workbench.

2. Analytic consideration

Consider a double-Gaussian waveguide of the length 2l 
schematically represented in Fig. 1.

Assume that there is no dissipation of the energy of 
oscillations so that the standing wave is perfectly symmetric 
with respect to the middle plane x = 0. Then the displacement 
field can be calculated for one part of the system, i. e. 0 < x < l, 
exactly in the same way as it was done by Eisner [17]. Below 
we reproduce the key points of those calculations.

The equation for the displacement amplitude is written 
as follows:

           d u
dx
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where u(x) is the oscillation amplitude at the section with 
a coordinate x, ω the circular frequency of ultrasound, 
c E� /�  the sound velocity in the bar, ρ the density of 
material and A=A(x) is the area of the cross section with a 
coordinate x.

The interval [0, l] is divided into two parts with different 
solutions to Eq. (2):
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where εm is the maximum of strain, X = x /l, U(X) = u(x) /l are 
dimensionless quantities.

As an independent dimensionless variable determining 
the characteristics of the waveguide, it is convenient to use 
the following quantity:
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which determines other parameters:
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The shape of the waveguide is given by the following 
relation:
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Due to the symmetry, the same distribution of 
displacements will be valid for the left part of the double-
Gaussian waveguide. The amplitudes of oscillations at the 
entry end, u(−l), and at the exit end, u(l), will be the same, 
while the amplitudes of strain, εm, and stress, σm, will be 

uniform over the interval −xt < x < xt. In other words, the 
part of the waveguide with the length 2xt will be subjected to 
oscillating normal stresses with the same amplitude σm.

The length of the uniformly stressed region, 2xt, and 
the corresponding values of the stress amplitude are then 
determined by the following equations:
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3. Case calculations of  
a double-gaussian waveguide

Equations (7) show that with an increase of the parameter  φ 
the length of the region with a uniform stress amplitude 
increases, but the maximum stress amplitude decreases. 
Therefore, a compromise choice of this parameter is needed 
in order to obtain optimal geometrical characteristics of the 
waveguide.

As examples, calculate the characteristics of the double-
Gaussian waveguide for two materials: steel grade 45 
(according to Russian classification) and titanium alloy 
VT6 (analog of Ti-6Al-4V). For steel  45 ρ = 7826  kg / m3 
and E = 200  GPa (Russian standard GOST  1050-88), and 
for VT6 ρ = 4430 kg / m3 and E =115 GPa (GOST 18807-91).  
The calculations are done for the frequency of f =19.9 kHz. 
The wave length � �� ( / ) /1 f E  in bars of these materials 
for this frequency are equal to λ = 254 mm and λ = 256 mm, 
respectively. As independent variables, the parameter φ and 
the diameter of the waveguide at its ends, d(l) = d(−l), are 
taken. The maximum diameter of the waveguide is calculated 
as d d l A A l( ) ( ) ( )/ ( )0 0= .

The values of the maximum diameter of waveguide, the 
length of uniformly stressed region, and maximum stress 
amplitude for the case of d(±l) = 20 mm and u(±l) =1 µm for 
several values of φ are presented in the Table 1.

Let us compare the maximum stress amplitudes achieved 
in the double-Gaussian waveguide with the one obtained in 
the antinode of a cylindric waveguide with the length 2l = λ / 2 
(see Eq.  (1)) for the case of VT6 alloy. For u(l) =1  µm the 
maximum stress amplitude in the cylindric bar is equal to 
σm0 = 2.82 MPa. Then, for φ =1.5 one finds that σm / σm0 ≈ 0.67. 
That is, for the same amplitude of displacements, in the 
double-Gaussian waveguide an approximately 33  per  cent 
less amplitude of stresses is achieved than in the cylindric 
waveguide for this case. The difference increases with 
an increase of the parameter φ, and for φ = 2 one finds 
σm / σm0 ≈ 0.5.

Fig. 1. The principal scheme of a double-Gaussian waveguide.
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4. Finite-element simulations

The analytical calculations presented above are approximate 
due to their one-dimensional character, since they do 
not take account for the finiteness of the lateral sizes of a 
waveguide. In order to refine the results, one can use finite 
element simulations.

To determine the resonance frequency, a modal analysis 
of the double-Gaussian waveguide has been carried out by 
finite-element method using ANSYS Workbench as follows.

Using the geometrical parameters obtained from analytic 
expressions for φ = 2, a finite-element model of the waveguide 
was constructed. Materials constants for VT6 alloy given above 
and the Poisson’s ratio ν = 0.3 were taken for simulations. The 
model was divided into 3654 elements and had 16636 nodes.

Modal analysis in the range of frequencies between  
19 and 20  kHz resulted in the value of eigen-frequency of 
f0 =19.281 kHz. In order to fit the frequency of f =19.9 kHz, 
the geometrical parameters of the model were scaled by 
using the fitting factor of f0 / f = 0.969. After this scaling, modal 
analysis was carried out once again which resulted in the 
desired eigenfrequency of f =19.9 kHz.

Using the model thus obtained, a harmonic analysis was 
carried out for a range of frequencies from 19 to 20  kHz.  

A harmonic force with an amplitude of 2 N was applied to one 
end of the waveguide for each frequency and the amplitude 
of oscillations of the ends was calculated. The resonant 
frequency was found to be equal to 19.9 kHz.

Presented in Fig.  2 are the displacement and stress 
distributions mapped on longitudinal sections of the 
finite-element models of the double-Gaussian waveguide 
with the values of φ parameter equal to 2 (Fig.  2 a, b). For 
a comparison, the displacement and stress maps for a 
half-wave cylinder with a diameter of 20  mm of the same 
material are given in Fig. 2 с, d. The symmetric distribution 
of the displacements and stresses along the acoustic axis with 
respect to the medium plane, the existence of an extended 
region of a uniform distribution of the stress amplitudes 
are clearly seen from Fig.  2 a – d. The length of the region 
of uniform stress amplitude in the double-Gaussian 
waveguide is close to the value calculated from the analytical 
theory. At the same time, the simulations have revealed 
that the distribution of stresses is not perfectly uniform in 
the cross section of the Gaussian region of the waveguide 
with parameter φ equal to 2. Namely, the stress amplitude 
slightly decreases in the radial direction closer to the surface.  
According to the simulation results, with a decrease of the 
parameter φ and, correspondingly, the ratio of maximum 

Table 1. Geometrical characteristics and achievable stress amplitudes at u(±l) =1 µm for double-Gaussian waveguides made of steel 45 and 
VT6 titanium alloy.

φ d(l), mm d(0), mm
Steel 45 VT6

l, mm xt, mm σm, MPa l, mm xt, mm σm, MPa

1.5 20 33.77 78.64 24.72 3.30 79.26 24.91 1.88

1.7 20 40.21 84.62 37.04 2.91 85.29 37.33 1.66

2 20 53.82 94.37 53.93 2.47 95.12 54.35 1.41

             
a              b

            c              d
Fig.  2. (Color online) Distribution of displacements (a, c) and stresses (b, d) in a double-Gaussian waveguide with φ = 2 (a, b) and in a uniform 
cylindric bar (c, d); the displacements are given in millimeters and stresses in megapascals.



417

Mukhametgalina et al. / Letters on Materials 9 (4), 2019 pp. 414-418

and minimum diameters d(0) / d(l), the distribution of 
the stresses over the cross section in the Gaussian region 
becomes more uniform.

The simulations confirm that at the same values of 
displacements at the waveguides’ ends (Fig. 2 a, c), the stress 
values in the Gaussian regions of double-Gaussian waveguides 
are lower than those in the antinode of a cylindric bar 
(compare Fig. 2 b, d). From the results of harmonic analysis, 
at u(l) =1  µm the stress amplitude in the cylindric bar is 
σm0 = 2.81  MPa, while in the double-Gaussian waveguide 
with φ =1.5 σm ≈1.85 MPa. These values are close to the ones 
obtained from the analytical calculations (see Table 1).

5. Discussion

Here, we have developed a new kind of waveguide the 
intended use of which is not an enhancement of the amplitude 
of displacements caused by ultrasonic vibrations as in 
traditional cases but an increase of the length of the region 
in which a uniform distribution of normal stress amplitudes 
can be achieved. For this, we used the high-amplitude part 
of the Gaussian waveguide whose symmetrical duplication 
resulted in a double-Gaussian waveguide. If a sample of 
material is given the shape of this waveguide, in a significant 
part of its length the normal stresses will have the same 
amplitude. This is important to carry out a uniform UST of 
the samples.

The analysis has shown that an increase of the parameter 
φ results in an increase of the length of the uniformly stressed 
region. At the same time, it leads to an increase of the diameter 
of the waveguide in its middle part and non-uniformity of the 
stress in the radial direction. Also, the amplitude of the stress 
in the Gaussian region decreases as compared to the one in 
the antinode of a uniform half-wave length cylinder.

A comparison of the results of analytical calculations and 
finite element modeling shows that the analytic relationships 
between the maximum displacement and stress amplitudes 
can be successfully used in the design of such waveguides.  
In order to measure the amplitude of stresses, one can 
measure the displacement amplitude at the end of waveguide 
and use Eq. (7 b). Geometrical parameters, however, should 
be updated using a fitting parameter, which can be obtained 
by finite element simulations.

In some cases, the length of samples subjected to 
deformation treatment before UST is not enough to make 
a whole double-Gaussian waveguide. For example, in the 
most cases severe plastic deformation by ECAP allows for a 
fabrication of cylinder of parallelepiped shaped samples with 
the length of about 100 mm. In these cases, the specimens cut 
from such samples can be treated in an instrument made as 
an assembled double-Gaussian waveguide (Fig. 3).

Inside the solid double-Gaussian waveguide calculated 
and fabricated as described above, a cylindric hole is made 
to insert a cylindric sample 2 of the length comparable to the 
length of the Gaussian region. This sample is tightly clamped 
inside the waveguide by a screwed clamping cylinder  3. 
Providing a good acoustic contact between the contacting 
parts by means of polishing their surfaces, one can obtain 
resonant vibrations in the system at frequencies close to the 
eigenfrequency of a solid waveguide.

To enhance the range of achievable stress amplitudes, a 
standard ultrasonic concentrator can be connected to the 
ultrasonic transducer prior to this waveguide. A similar 
instrument but with the simple cylindric form of the 
waveguide has recently been used in [18] to subject cylindric 
samples of VT6 alloy with the length of 40  mm with an 
ultrafine grained structure processed by ECAP. This scheme 
of treatment has proved its efficiency and resulted in a 
significant enhancement of the characteristics of superplastic 
deformation of the alloy as compared to the state just after 
ECAP.

6. Conclusions

The following conclusions can be made basing on the results 
of the present study.

1. In order to excite ultrasonic vibrations with a uniform 
distribution of normal stress amplitudes in a significant 
part of samples, samples in the shape of a double-Gaussian 
waveguide composed of symmetrically joined two high-
amplitude parts of a Gaussian waveguide can be used.

2. Analytic expressions for the double-Gaussian waveguide 
obtained basing on Eisner’s consideration [17] allow one to 
predict the relationship between the displacement amplitude 
at the waveguide’s ends and the stress amplitude in the 
Gaussian region fairly well, but the geometrical parameters 
of the waveguide should be updated using a fitting ratio 
obtained from finite-element simulations.

3. Basing on the double-Gaussian waveguide, a composite-
structure instrument can be made, in which a relatively long 
(up to 40 – 60  mm length) cylindric sample can be tightly 
clamped and subjected to uniform field of oscillating stresses.

4.  The double-Gaussian solid waveguide or composite 
instrument can be useful for the bulk ultrasonic treatment 
of large samples designed for the studies, for example, of 
superplastic properties or impact toughness.
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