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An interstitial atom placed into a close-packed atomic row is called crowdion. Crowdions are very efficient in mass transfer in 
the crystal lattice since they are highly mobile, soliton-like objects. It has been demonstrated recently that single interstitial atom 
can move along a close-packed atomic row with a supersonic speed in two different modes, either as a classical 1‑crowdion or 
as a 2‑crowdion. The difference is that in the latter case two atoms move with a high speed at the same time, while in the former 
case only one atom has high speed. It has been shown that the 2‑crowdion requires lesser energy to initiate mass transfer and it 
travels longer distance if it has same energy with the 1‑crowdion. It is important to compare the efficiency of mass transfer by 
2‑crowdions in different materials. Materials have different properties because the interatomic interactions between various 
atoms are different. In the present study we demonstrate that the most important characteristic of the interatomic potentials, 
that has effect on the crowdion path length, is the energy of the interatomic bond at the distance between two atoms equal 
to a half of the equilibrium interatomic distance. This conclusion is justified by the condition of self-focusing propagation of 
supersonic crowdions, that is the collision velocity of the atoms should not exceed the value when they approach each other 
closer than half interatomic distance. As an example, mass transfer by 1- and 2‑crowdions is considered in two-dimensional 
triangular lattice with Morse and Born-Mayer potentials.
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1. Introduction

Many physical processes in crystals, e. g., plastic deformation 
[1– 7], structure transformation during heat treatment [8] 
and swelling under irradiation [9 –13] are accompanied by 
the transport of mass over crystal lattice. Vacancy diffusion 
contributes noticeably to the mass transfer in the crystals at 
elevated temperatures [8,14,15]. Concentration of interstitial 
atoms in thermal equilibrium is considerably smaller than that 
of vacancies since the former have higher energy, but the role 
of interstitials considerably increases in far-from-equilibrium 
processes. Migration energy of interstitials can be relatively 
high [16] or very low when they are located in close packed 
atomic rows [17], in the latter case they are called crowdions. 
Interestingly, crowdions usually have lower potential energy 
than immobile interstitials [17,18]. Crowdions can be at rest, but 
they also can move at subsonic or supersonic speeds [19 – 21].

Stationary or subsonic crowdions have a kink profile, 
whose width is from half a dozen to a dozen atoms. Classical 
supersonic crowdions are strongly localized on single atom 
[21, 22]. Crowdions play a very important role in relaxation 
processes associated with mass and energy transfer [6, 23 – 30]. 
It has been shown that clusters of interstitials formed during 
irradiation have very high mobility [23 – 30].

Moving excitations in crystals have recently attracted 
attention of researchers due to the experimentally observed 
effect of annealing of defects deep inside a germanium single 

crystal during surface plasma treatment [31], as well as due to 
exploration of the nature of tracks of particles that can be seen 
in mica crystals [21, 32 – 36]. In particular, discrete breathers 
[37 – 43] and crowdions [21] as moving excitations in mica 
were discussed. The dynamics and collisions of supersonic 
crowdions in a two-dimensional lattice were analyzed in 
[44 – 49]. It was shown that moving discrete breathers and 
crowdions can transport electrons [50]. Crowdions can make 
a significant contribution to the mass transfer observed during 
severe plastic deformation (SPD) of metals and alloys. As it 
turned out, SPD, even at room temperature, can stimulate 
phase transformations occurring in the absence of deformation 
at much higher temperatures [51– 54]. These phase transitions 
occur very quickly and are accompanied by accelerated mass 
transfer, which cannot be explained only by conventional 
mechanisms such as bulk and grain-boundary diffusion, even 
in the presence of an increased concentration of vacancies.

In the present study we continue the analysis of supersonic 
crowdion dynamics [45 – 49] by analyzing the effect of 
interatomic potentials on their path length. 2D triangular 
lattice is considered to speed up the simulations and taking 
into account that the results obtained earlier for 2D [47] 
and 3D [48] Morse lattices are in a very good qualitative 
agreement and differ only quantitatively. Besides, crowdions 
in 2D triangular lattices have been considered in relation 
to mica muscovite crystal, where nonlinear excitations can 
propagate in the potassium monatomic layer [37, 39].
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2. Simulation setup

A triangular two-dimensional lattice with interatomic 
distance d is considered. As shown in Fig.  1, the x axis is 
directed along close-packed direction.

Two pairwise interatomic potentials are considered.
The Morse potential is
	   U r D e er r r rm m
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Here UMR is the potential energy of two interacting atoms,  
r is the distance between them, and α, D, and rm are the 
potential parameters. UMR(r) has minimum at r = rm, D is the 
depth of the potential (binding energy), and α defines the 
rigidity of the interatomic bond.

Similarly, the Born-Mayer potential is
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Here parameters are denoted as β, B, and rc. The first one 
defines the bond rigidity, the second one the potential depth, 
and the third one the equilibrium interatomic distance. 
Parameters of the two potentials were chosen in a way to 
achieve
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where without loss of generality we set rmin =1. From 
Eqs.  (3) – (5) it follows that both potentials have minimum 
at rmin =1, and at the point of minimum both potentials have 
equal value of –1 and equal value of the second derivative. 
Physically this means that the equilibrium interatomic 
distance for both potentials is equal to 1, the binding energy 
of both potentials is equal to 1, and they both have same 
rigidity for small displicaments from equilibrium distance. 
These conditions are achieved for D = rm =1, α = 6 for the 
Morse potential and B = 0.98091338226, β = 0.0716924, and 
rc = –0.02142746 for the Born-Mayer potential. The mass 
of an atom in both crystals is M =1, which can always be 
achieved by a proper choice of the time unit. The cut-off 
radius is 5rm. Then the equilibrium interatomic distance 

in the Morse lattice is d = 0.9955675 and in the Born-
Mayer lattice is d = 0.9908151. The Morse and Born-Mayer 
potentials are shown in Fig. 2 by the solid and dashed lines, 
respectively. Inset shows the repulsive part of the potentials. 
It can be seen that the attractive parts of the potentials (r >1) 
are close to each other, but the repulsive parts (r <1) deviate 
noticeably. In the study of crowdions the repulsive part of the 
potential is important, since the interstitial atom produces 
local compression.

The equations of motion of atoms were integrated using 
the Stormer method of the sixth order of accuracy with a time 
step equal to τ =10−3. No thermal vibrations were introduced, 
that is, the simulations were performed at a temperature of 
0 K. Periodic boundary conditions are used.

1‑crowdion was initiated by giving initial velocity to a 
single atom (V0, εV0), where V0 is the initial velocity along the 
close-packed atomic row oriented along the x-axis and ε <<1, 
so that a small component of the velocity vector in the lateral 
direction is added in order to analyze the crowdion self-
focusing. The initial conditions for initiating a 2‑crowdion 
are shown in Fig. 1: atoms 1 and 2 have initial velocities with 
components (V0, εV0) and (V0, −εV0), where ε <<1. The value 
ε=10−6 was adopted. The energy given to the system by the 
excitation of crowdions is equal to the kinetic energy of the 
excited atoms,

		        E0 = NMV0
2 / 2, 			  (6)

where N =1 and 2 for 1- and 2‑crowdions, respectively. Recall 
that the mass of an atom is M =1 in our simulations.

3. Condition of self-focusing atomic collisions

When a supersonic crowdion moves along a close-packed 
atomic row, the atoms collide at a high speed. Their collisions 
can be self-focusing or defocusing.

The problem of self-focusing collisions in a chain of hard 
balls was solved in [55]. The balls of diameter d are arranged 
in a row at a distance s from each other. Suppose that the 
first ball is launched not strictly along the chain, but at a 
certain angle θ. Exact geometrical calculations show that if 
d > s, then the sequence of collisions will be self-focusing,  
that is, the direction of the velocity vector of the next balls 
will exponentially quickly approach the axis of the chain.  
If this condition is violated, the collisions will be defocusing, 

Fig. 1. Atoms of a triangular lattice on the xy plane. The x axis is 
directed along a close-packed atomic row, d is the interatomic 
distance or diameter of an atom. Atoms in one close-packed row 
(shown lighter) are numbered by the index n. The initial conditions 
for initiating a 2‑crowdion are shown: atoms 1 and 2 have initial 
velocities with components (V0, εV0) and (V0, −εV0), where ε <<1.

Fig. 2. (Color online) Morse and Born-Mayer potentials shown by 
the solid and dashed lines, respectively. Inset shows the repulsive 
part of the potentials. Potential parameters are chosen in a way to 
satisfy Eqs. (3) – (5) for rmin =1.
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that is, an arbitrarily small initial deviation of the velocity 
vector from the axis of the chain will increase exponentially 
with subsequent collisions.

For a crystal in equilibrium, in a close-packed row the 
atoms of diameter d have interatomic distance d, while the 
distance s between them is zero (see Fig. 3, the upper panel). 
The atoms are not hard balls and their effective diameter 
depends on the collision velocity, and it is smaller for higher 
collision velocity. Taking into account the criterion of self-
focusing collisions of hard balls, the criterion of self-focusing 
atomic collisions can be formulated as follows: the speed 
of collision should not exceed the value at which centers of 
atoms come closer than half of their diameter (see Fig. 3, the 
lower panel):

		             d d
min

>
2

. 			   (7)

This self-focusing condition for atoms, in contrast to the 
condition for hard balls, is not strict, but it works quite well 
at least for the Morse pairwise interactions as shown in [48].

Having in mind the self-focusing condition (7), we now 
discuss the effect of the interatomic potentials on the crowdion 
dynamics. The inset in Fig. 2 shows that the repulsive parts of 
the Morse and Born-Mayer potentials are noticeably different. 
Since the atoms in the self-focusing collisions can approach 
each other, as maximum, by half atomic diameter (in our case 
d =1), we note that at UMR(d / 2) = 363, while UBM(d / 2) = 680, 
which is almost two times greater. This means that the atoms 
in the Born-Mayer lattice can have almost two times greater 
energy not violating the self-focusing condition. Having 
this in mind one can expect that the Born-Mayer lattice can 
support self-focusing crowdions with higher energy and thus, 
propagating longer distances. In the following Section this 
conjecture will be supported by the numerical data.

4. Results and discussion

Crowdion motion is a periodic collision of atoms.  
If the frequency of atomic collisions is above the phonon 
spectrum, the radiation of phonons by the moving crowdion 
will be minimal and the energy loss will be mainly due to 
formation of the shock waves. That is why it is important to 

compare the highest phonon frequency for the Morse and 
Born-Mayer lattices. The density of phonon states (DOS) 
for the two considered lattices is presented in Fig. 4. It can 
be seen that the highest phonon frequencies of the lattices 
are close: 3.43 for the Morse lattice, and 3.60 for the Born-
Mayer lattice. This means that the conditions of radiation-
free propagation for both lattices are close.

The main result of this study is presented in Fig. 5, where 
the crowdion path length measured in the interatomic 
distances, N, is shown as the function of (a) initial velocity 
V0 of excited atoms and (b) initial energy E0 given to the 
system. Results for the Born-Mayer (Morse) potential 
are presented by squares (circles). Empty symbols are for 
1‑crowdion and filled ones for 2‑crowdion. For brevity we 
use the notations MR-1 and MR-2 for the 1- and 2‑crowdions 
in the Morse lattice and, similarly, BM-1 and BM-2 for the 1- 
and 2‑crowdions in the Born-Mayer lattice. The dependence 

Fig. 3. To the discussion of self-focusing atomic collisions in a close-
packed chain of atoms. The atoms have diameter d and there is no 
space between them (s = 0). The effective diameter of atoms depends 
on the speed of their collision. The criterion for self-focusing 
collisions can be formulated as follows: the speed of their collisions 
should not exceed the value at which the centers of the atoms are 
closer than half of their diameter (s = d / 2).

Fig. 4. (Color online) Density of phonon states for the two-
dimensional triangular lattice: thin black curve for the Morse 
potential, thick blue curve for the Born-Mayer potential.

			         a

			         b
Fig. 5. (Color online) Crowdion path length in interatomic distances 
as the function of initial velocity of the excited atoms V0 (a) and 
initial energy of the excited atoms E0 (b). Open and filled circles 
are for the 1- and 2‑crowdions, respectively, moving in the Morse 
crystal. Open and filled squares are for the 1- and 2‑crowdions, 
respectively, moving in the Born-Mayer crystal.
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N(E0) is almost linear for the energies E0 < E*, where E*= 750 
for MR-1, E*= 900 for MR-2, E*=1800 for BM-1, and E*=1600 
for BM-2. For E0 > E* the path length of the crowdions reduces 
considerably. This is because for E0 > E* the condition of self-
focusing propagation (7) is violated. It is clearly seen that in 
all cases 2‑crowdions have 2 to 2.5 times greater path length 
than 1‑crowdions launched with the same initial energy E0. 
Interestingly, for the initial velocity V0 < 39 for 1‑crowdion 
and for V0 < 30 for 2‑crowdion the results obtained with the 
two different interatomic potentials are very close. However, 
for larger initial velocities both 1- and 2‑crowdions travel 
longer distances in the Born-Mayer lattice. This happens 
because for the Born-Mayer potential, as it was pointed out 
in Sec.  2, the energy UBM(0.5) = 680 is considerably greater 
than UMR(0.5) = 363, see the inset in Fig. 2. This implies that 
in the Born-Mayer lattice self-focusing condition is satisfied 
for higher energy collisions. Having higher initial energies of 
self-focusing propagation, crowdions travel longer distances 
in the Born-Mayer latice.

5. Conclusions

Molecular dynamics simulations undertaken in this study 
demonstrate that actual profile of the repulsive part of the 
interatomic potential has little effect on the path length of 1- 
or 2‑crowdions, but the value of the potential at the distance 
equal to half interatomic distance strongly affects the 
crowdion path length. This is the main result of the present 
study. The explanation of this result is simple: self-focusing 
collisions in the Born-Mayer lattice take place for higher 
collision velocities and thus, for higher energies of crowdions. 
Crowdions with higher energy travel longer distances (see 
Fig. 5 b) in the regime of self-focusing propagation.

This study also confirms that the 2‑crowdions have 2 to 
2.5 times greater path length then the 1‑crowdions with the 
same initial energy. This phenomenon has been explained in 
[45 – 49, 56] through the fact that 2‑crowdion with the same 
energy features smaller collision velocities between atoms 
and this is favorable for the self-focusing propagation of 
2‑crowdions.

As a continuation of this study, the criterion of the 
efficiency of mass transfer by crowdions deduced here for 
the two-dimensional lattices with pairwise potentials can be 
verified for various metals with many-body interactions [57].
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